Skip to main content

Advertisement

Log in

Recent advances in carbohydrate-based paclitaxel delivery systems

  • REVIEW PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Paclitaxel (PTX) as the most important member of the taxane family is used against a wide range of cancers including breast, ovarian and lung cancers. However, the effectiveness of PTX in clinical practice is limited by its low water solubility and permeability in biological tissues. To address these limitations, PTX is formulated with Cremophor EL and dehydrated ethanol, known as Taxol®. Due to the adverse side effects of the formulation, efforts have been made in recent years to develop alternative PTX formulations. Polysaccharides, due to their low toxicity and biocompatibility, biodegradability, and ease of chemical modification are an excellent alternative to Cremophor EL for formulating PTX. This review focuses on recent advances to develop PTX formulations based on polysaccharides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Reproduced from Ref. [81] with permission from the Royal Society of Chemistry

Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

5-FU:

5-Fluorouracil

ACHN:

Alginate coated chitosan hollow nanosphere

ALG:

Alginate

a-OMPC:

O-maleyl-O-phosphoryl chitosan

CD:

Cyclodextrins

CD-DST:

Collagen gel droplet-embedded culture-drug sensitivity test

CMC:

Carboxymethyl chitosan

COL:

Collagen

CPP:

Cell penetrating hybrid

Chitosan-Rhein:

Chitosan-4,5-dihydroxy-9,10-dioxoanthracene-2-carboxylic acid

CRT:

Chemoradiotherapy

CS:

Chitosan

CTAB:

Cetyltrimethylammonium bromide

DL:

Drug loading capacity

DMβCD:

6-Di-O-methyl beta cyclodextrin

DOX:

Doxorubicin

ECM:

Extracellular matrix

EE:

Encapsulation efficiency

EGFR:

Epidermal growth factor receptor

GBM:

Glioblastoma multiforme

HA:

Hydroxyapatite

IDO-1:

2,3-Dioxygenase-1

LMC:

Chitosan-coated liposomal delivery system

LST-Lip:

Losartan loaded liposomes

ND:

Nanodroplet

MH:

Minocycline hydrochloride

MP:

Microparticle

NP:

Nanoparticle

PCL:

Polycaprolactone

P-gp:

P-glycoprotein

PLGA:

Poly(lactic-glycolic acid)

PNIPAAm:

Poly(N-isopropylacrylamide)

PM:

Polymeric micelle

PNP:

Polymeric nanoparticle

PPS:

Paclitaxel loaded into porous starch

PTX:

Paclitaxel

PTXCDL:

Paclitaxel/hydroxypropyl-β-cyclodextrin complex-loaded liposome

SDS:

Sodium dodecyl sulfate

SF:

Silk fibroin

TH-Lip:

AGYLLGHINLHHLAHL(Aib)HHIL-NH2

TJ:

Tight junction

TME:

Tumor microenvironment

TSA:

Thiolated sodium alginate

References

  1. Heinig U, Scholz S, Jennewein S (2013) Getting to the bottom of Taxol biosynthesis by fungi. Fungal Div 60(1):161–170

    Article  Google Scholar 

  2. Weaver BA (2014) How Taxol/paclitaxel kills cancer cells. Mol Biol Cell 25(18):2677–2681

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ezrahi S, Aserin A, Garti N (2019) Basic principles of drug delivery systems–the case of paclitaxel. Adv Coll Interface Sci 263:95–130

    Article  CAS  Google Scholar 

  4. Marupudi NI, Han JE, Li KW, Renard VM, Tyler BM, Brem H (2007) Paclitaxel: a review of adverse toxicities and novel delivery strategies. Expert Opin Drug Saf 6(5):609–621

    Article  PubMed  CAS  Google Scholar 

  5. Wang Y-J, Zhang Y-K, Zhang G-N, Al-Rihani SB, Wei M-N, Gupta P, Zhang X-Y, Shukla S, Ambudkar SV, Kaddoumi A (2017) Regorafenib overcomes chemotherapeutic multidrug resistance mediated by ABCB1 transporter in colorectal cancer: in vitro and in vivo study. Cancer Lett 396:145–154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Tian Y, Zhang H, Qin Y, Li D, Liu Y, Wang H, Gan L (2018) Overcoming drug-resistant lung cancer by paclitaxel-loaded hyaluronic acid-coated liposomes targeted to mitochondria. Drug Dev Ind Pharm 44(12):2071–2082

    Article  PubMed  CAS  Google Scholar 

  7. Qian J, Xia M, Liu W, Li L, Yang J, Mei Y, Meng Q, Xie Y (2019) Glabridin resensitizes p-glycoprotein-overexpressing multidrug-resistant cancer cells to conventional chemotherapeutic agents. Eur J Pharmacol 852:231–243

    Article  PubMed  CAS  Google Scholar 

  8. Eftekhari-Sis B, Akbari M, Akbari A, Amini M (2017) Vanadium (V) and Tungsten (VI) oxoperoxo-complexes anchored on Fe3O4 magnetic nanoparticles: versatile and efficient catalysts for the oxidation of alcohols and sulfides. Catal Lett 147(8):2106–2115

    Article  CAS  Google Scholar 

  9. Arsalani N, Akbari A, Amini M, Jabbari E, Gautam S, Chae KH (2017) POSS-Based covalent networks: supporting and stabilizing pd for heck reaction in aqueous media. Catal Lett 147(4):1086–1094

    Article  CAS  Google Scholar 

  10. Akbari A, Arsalani N (2016) Organic–inorganic incompletely condensed polyhedral oligomeric silsesquioxane-based nanohybrid: synthesis, characterization and dye removal properties. Polym-Plast Technol Eng 55(15):1586–1594

    Article  CAS  Google Scholar 

  11. Abu-Fayyad A, Kamal MM, Carroll JL, Dragoi A-M, Cody R, Cardelli J, Nazzal S (2018) Development and in-vitro characterization of nanoemulsions loaded with paclitaxel/γ-tocotrienol lipid conjugates. Int J Pharm 536(1):146–157

    Article  PubMed  CAS  Google Scholar 

  12. Yang W, Hu Q, Xu Y, Liu H, Zhong L (2018) Antibody fragment-conjugated gemcitabine and paclitaxel-based liposome for effective therapeutic efficacy in pancreatic cancer. Mater Sci Eng C 89:328–335

    Article  CAS  Google Scholar 

  13. Upponi JR, Jerajani K, Nagesha DK, Kulkarni P, Sridhar S, Ferris C, Torchilin VP (2018) Polymeric micelles: theranostic co-delivery system for poorly water-soluble drugs and contrast agents. Biomaterials 170:26–36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Hassan MS, Awasthi N, Li J, Williams F, Schwarz MA, Schwarz RE, von Holzen U (2018) Superior therapeutic efficacy of nanoparticle albumin bound paclitaxel over cremophor-bound paclitaxel in experimental esophageal adenocarcinoma. Transl Oncol 11(2):426–435

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nawara HM, Afify SM, Hassan G, Zahra MH, Seno A, Seno M (2021) Paclitaxel-based chemotherapy targeting cancer stem cells from mono-to combination therapy. Biomedicines 9(5):500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Sharifi-Rad J, Quispe C, Patra JK, Singh YD, Panda MK, Das G, Adetunji CO, Michael OS, Sytar O, Polito L (2021) Paclitaxel: application in modern oncology and nanomedicine-based cancer therapy. Oxidat Med Cellul Long

  17. Bharadwaj R, Yu H (2004) The spindle checkpoint, aneuploidy, and cancer. Oncogene 23(11):2016–2027

    Article  PubMed  CAS  Google Scholar 

  18. Brito DA, Yang Z, Rieder CL (2008) Microtubules do not promote mitotic slippage when the spindle assembly checkpoint cannot be satisfied. J Cell Biol 182(4):623–629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Chen J-G, Horwitz SB (2002) Differential mitotic responses to microtubule-stabilizing and-destabilizing drugs. Can Res 62(7):1935–1938

    CAS  Google Scholar 

  20. Hornick JE, Bader JR, Tribble EK, Trimble K, Breunig JS, Halpin ES, Vaughan KT, Hinchcliffe EH (2008) Live-cell analysis of mitotic spindle formation in taxol-treated cells. Cell Motil Cytoskelet 65(8):595–613

    Article  Google Scholar 

  21. Wang T, Chan Y, Chen C, Kung W, Lee Y, Wang S, Chang T, Wang H (2006) Paclitaxel (Taxol) upregulates expression of functional interleukin-6 in human ovarian cancer cells through multiple signaling pathways. Oncogene 25(35):4857–4866

    Article  PubMed  CAS  Google Scholar 

  22. Khing TM, Choi WS, Kim DM, Po WW, Thein W, Shin CY, Sohn UD (2021) The effect of paclitaxel on apoptosis, autophagy and mitotic catastrophe in AGS cells. Sci Rep 11(1):1–19

    Article  Google Scholar 

  23. Ren X, Zhao B, Chang H, Xiao M, Wu Y, Liu Y (2018) Paclitaxel suppresses proliferation and induces apoptosis through regulation of ROS and the AKT/MAPK signaling pathway in canine mammary gland tumor cells. Mol Med Rep 17(6):8289–8299

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Peptu CA, Ochiuz L, Alupei L, Peptu C, Popa M (2014) Carbohydrate based nanoparticles for drug delivery across biological barriers. J Biomed Nanotechnol 10(9):2107–2148

    Article  PubMed  CAS  Google Scholar 

  25. Patti A, Acierno D (2022) Towards the sustainability of the plastic industry through biopolymers: properties and potential applications to the textiles world. Polymers 14(4):692

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Manarin E, Corsini F, Trano S, Fagiolari L, Amici J, Francia C, Bodoardo S, Turri S, Bella F, Griffini G (2022) Cardanol-derived epoxy resins as biobased gel polymer electrolytes for potassium-ion conduction. ACS Appl Polym Mater 4(5):3855–3865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Anthony LS, Vasudevan M, Perumal V, Ovinis M, Raja PB, Edison TNJI (2021) Bioresource-derived polymer composites for energy storage applications: Brief review. J Environ Chem Eng 9(5):105832

    Article  CAS  Google Scholar 

  28. Xu T, Liu K, Sheng N, Zhang M, Liu W, Liu H, Dai L, Zhang X, Si C, Du H (2022) Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: properties, applications, and perspectives. Energy Storage Mater

  29. Madej-Kiełbik L, Gzyra-Jagieła K, Jóźwik-Pruska J, Dziuba R, Bednarowicz A (2022) Biopolymer composites with sensors for environmental and medical applications. Materials 15(21):7493

    Article  PubMed  PubMed Central  Google Scholar 

  30. Simelane NP, Asante JK, Ndibewu PP, Mramba AS, Sibali LL (2022) Biopolymer composites for removal of toxic organic compounds in pharmaceutical effluents–a review. Carbohyd Polym Technol Appl 100239

  31. Ansari R, Sadati SM, Mozafari N, Ashrafi H, Azadi A (2020) Carbohydrate polymer-based nanoparticle application in drug delivery for CNS-related disorders. Eur Polymer J 128:109607

    Article  CAS  Google Scholar 

  32. Manivasagan P, Bharathiraja S, Bui NQ, Lim IG, Oh J (2016) Paclitaxel-loaded chitosan oligosaccharide-stabilized gold nanoparticles as novel agents for drug delivery and photoacoustic imaging of cancer cells. Int J Pharm 511(1):367–379

    Article  PubMed  CAS  Google Scholar 

  33. Ahmadi Z, Saber M, Akbari A, Mahdavinia GR (2018) Encapsulation of Satureja hortensis L (Lamiaceae) in chitosan/TPP nanoparticles with enhanced acaricide activity against Tetranychus urticae Koch (Acari: Tetranychidae). Ecotoxicol Environ Saf 161:111–119

    Article  PubMed  CAS  Google Scholar 

  34. Lai M, Wang J, Tan J, Luo J, Zhang L-M, Deng DY, Yang L (2017) Preparation, complexation mechanism and properties of nano-complexes of Astragalus polysaccharide and amphiphilic chitosan derivatives. Carbohyd Polym 161:261–269

    Article  CAS  Google Scholar 

  35. Ghaffarian R, Pérez-Herrero E, Oh H, Raghavan SR, Muro S (2016) Chitosan-alginate microcapsules provide gastric protection and intestinal release of ICAM-1-targeting nanocarriers, Enabling GI targeting in vivo. Adv Funct Mater 26(20):3382–3393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Wang X, Qiu L, Wang X, Ouyang H, Li T, Han L, Zhang X, Xu W, Chu K (2020) Evaluation of intestinal permeation enhancement with carboxymethyl chitosan-rhein polymeric micelles for oral delivery of paclitaxel. Int J Pharm 573:118840

    Article  PubMed  CAS  Google Scholar 

  37. Qu G, Hou S, Qu D, Tian C, Zhu J, Xue L, Ju C, Zhang C (2019) Self-assembled micelles based on N-octyl-N’-phthalyl-O-phosphoryl chitosan derivative as an effective oral carrier of paclitaxel. Carbohyd Polym 207:428–439

    Article  CAS  Google Scholar 

  38. Du X, Yin S, Xu L, Ma J, Yu H, Wang G, Li J (2020) Polylysine and cysteine functionalized chitosan nanoparticle as an efficient platform for oral delivery of paclitaxel. Carbohyd Polym 229:115484

    Article  CAS  Google Scholar 

  39. Thomas RP, Recht L, Nagpal S (2013) Advances in the management of glioblastoma: the role of temozolomide and MGMT testing. Clin Pharmacol Adv Appl 5:1

    CAS  Google Scholar 

  40. Singh PK, Srivastava AK, Dev A, Kaundal B, Choudhury SR, Karmakar S (2018) 1, 3β-Glucan anchored, paclitaxel loaded chitosan nanocarrier endows enhanced hemocompatibility with efficient anti-glioblastoma stem cells therapy. Carbohyd Polym 180:365–375

    Article  CAS  Google Scholar 

  41. Bigham A, Foroughi F, Ghomi ER, Rafienia M, Neisiany RE, Ramakrishna S (2020) The journey of multifunctional bone scaffolds fabricated from traditional toward modern techniques. Bio-Des Manufact, pp 1–26

  42. Gao Y, Wei M, Li X, Xu W, Ahiabu A, Perdiz J, Liu Z, Serpe MJ (2017) Stimuli-responsive polymers: fundamental considerations and applications. Macromol Res 25(6):513–527

    Article  CAS  Google Scholar 

  43. Qu D, Jiao M, Lin H, Tian C, Qu G, Xue J, Xue L, Ju C, Zhang C (2020) Anisamide-functionalized pH-responsive amphiphilic chitosan-based paclitaxel micelles for sigma-1 receptor targeted prostate cancer treatment. Carbohyd Polym 229:115498

    Article  CAS  Google Scholar 

  44. Luo F, Fan Z, Yin W, Yang L, Li T, Zhong L, Li Y, Wang S, Yan J, Hou Z (2019) pH-responsive stearic acid-O-carboxymethyl chitosan assemblies as carriers delivering small molecular drug for chemotherapy. Mater Sci Eng, C 105:110107

    Article  CAS  Google Scholar 

  45. Zhang R, Liu R, Liu C, Pan L, Qi Y, Cheng J, Guo J, Jia Y, Ding J, Zhang J (2020) A pH/ROS dual-responsive and targeting nanotherapy for vascular inflammatory diseases. Biomaterials 230:119605

    Article  PubMed  CAS  Google Scholar 

  46. Shang M, Sun X, Guo L, Shi D, Liang P, Meng D, Zhou X, Liu X, Zhao Y, Li J (2020) pH-and Ultrasound-responsive paclitaxel-loaded carboxymethyl chitosan nanodroplets for combined imaging and synergistic chemoradiotherapy. Int J Nanomed 15:537

    Article  CAS  Google Scholar 

  47. Qian Q, Niu S, Williams GR, Wu J, Zhang X, Zhu L-M (2019) Peptide functionalized dual-responsive chitosan nanoparticles for controlled drug delivery to breast cancer cells. Colloids Surf, A 564:122–130

    Article  CAS  Google Scholar 

  48. Singh B, Kumar A (2020) Synthesis and characterization of alginate and sterculia gum based hydrogel for brain drug delivery applications. Int J Biol Macromol 148:248–257

    Article  PubMed  CAS  Google Scholar 

  49. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Safaei M, Taran M (2018) Optimized synthesis, characterization, and antibacterial activity of an alginate–cupric oxide bionanocomposite. J Appl Polym Sci 135(2):45682

    Article  Google Scholar 

  51. Nazemi Z, Nourbakhsh MS, Kiani S, Heydari Y, Ashtiani MK, Daemi H, Baharvand H (2020) Co-delivery of minocycline and paclitaxel from injectable hydrogel for treatment of spinal cord injury. J Control Release 321:145–158

    Article  PubMed  CAS  Google Scholar 

  52. Zhang J, Huang J, Huang K, Zhang J, Li Z, Zhao T, Wu J (2019) Egg white coated alginate nanoparticles with electron sprayer for potential anticancer application. Int J Pharm 564:188–196

    Article  PubMed  CAS  Google Scholar 

  53. Tao L, Jiang J, Gao Y, Wu C, Liu Y (2018) Biodegradable Alginate-Chitosan Hollow Nanospheres for codelivery of doxorubicin and paclitaxel for the effect of human lung cancer A549 cells. BioMed Res Int 2018:4607945

    Article  PubMed  PubMed Central  Google Scholar 

  54. Alipour S, Montaseri H, Khalili A, Tafaghodi M (2016) Non-invasive endotracheal delivery of paclitaxel-loaded alginate microparticles. J Chemother 28(5):411–416

    Article  PubMed  CAS  Google Scholar 

  55. Pourjavadi A, Amin SS, Hosseini SH (2018) Delivery of hydrophobic anticancer drugs by hydrophobically modified alginate based magnetic nanocarrier. Ind Eng Chem Res 57(3):822–832

    Article  CAS  Google Scholar 

  56. Ansari L, Jaafari MR, Bastami TR, Malaekeh-Nikouei B (2018) Improved anticancer efficacy of epirubicin by magnetic mesoporous silica nanoparticles: in vitro and in vivo studies. Artific Cells Nanomed Biotechnol 46(sup2):594–606

    Article  CAS  Google Scholar 

  57. Arora V, Sood A, Kumari S, Kumaran SS, Jain TK (2020) Hydrophobically modified sodium alginate conjugated plasmonic magnetic nanocomposites for drug delivery and magnetic resonance imaging. Mater Today Commun 25:101470

    Article  CAS  Google Scholar 

  58. Markeb AA, El-Maali NA, Sayed DM, Osama A, Abdel-Malek MA, Zaki AH, Elwanis ME, Driscoll JJ (2016) Synthesis, structural characterization, and preclinical efficacy of a novel paclitaxel-loaded alginate nanoparticle for breast cancer treatment. Int J Breast Cancer 2016:7549372

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wang X, Huang L, Zhang C, Deng Y, Xie P, Liu L, Cheng J (2020) Research advances in chemical modifications of starch for hydrophobicity and its applications: a review. Carbohyd Polym 240:116292

    Article  CAS  Google Scholar 

  60. Zhu T, Jackson DS, Wehling RL, Geera B (2008) Comparison of amylose determination methods and the development of a dual wavelength iodine binding technique. Cereal Chem 85(1):51–58

    Article  CAS  Google Scholar 

  61. Sun Y, Jiao G, Liu Z, Zhang X, Li J, Guo X, Du W, Du J, Francis F, Zhao Y (2017) Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front Plant Sci 8:298

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lemos PVF, Marcelino HR, Cardoso LG, de Souza CO, Druzian JI (2021) Starch chemical modifications applied to drug delivery systems: from fundamentals to FDA-approved raw materials. Int J Biol Macromol 184:218–234

    Article  PubMed  CAS  Google Scholar 

  63. Wang L, Zhao X, Yang F, Wu W, Wu M, Li Y, Zhang X (2019) Loading paclitaxel into porous starch in the form of nanoparticles to improve its dissolution and bioavailability. Int J Biol Macromol 138:207–214

    Article  PubMed  CAS  Google Scholar 

  64. Putro JN, Ismadji S, Gunarto C, Soetaredjo FE, Ju YH (2019) Effect of natural and synthetic surfactants on polysaccharide nanoparticles: Hydrophobic drug loading, release, and cytotoxic studies. Colloids Surf, A 578:123618

    Article  CAS  Google Scholar 

  65. Putro JN, Ismadji S, Gunarto C, Soetaredjo FE, Ju YH (2020) A study of anionic, cationic, and nonionic surfactants modified starch nanoparticles for hydrophobic drug loading and release. J Mol Liq 298:112034

    Article  CAS  Google Scholar 

  66. Khan I, Apostolou M, Bnyan R, Houacine C, Elhissi A, Yousaf SS (2020) Paclitaxel-loaded micro or nano transfersome formulation into novel tablets for pulmonary drug delivery via nebulization. Int J Pharm 575:118919

    Article  PubMed  CAS  Google Scholar 

  67. Khan I, Lau K, Bnyan R, Houacine C, Roberts M, Isreb A, Elhissi A, Yousaf S (2020) A facile and novel approach to manufacture paclitaxel-loaded proliposome tablet formulations of micro or nano vesicles for nebulization. Pharm Res 37:1–19

    Article  Google Scholar 

  68. Wang H, Hu H, Yang H, Li Z (2021) Hydroxyethyl starch based smart nanomedicine. RSC Adv 11(6):3226–3240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Li Y, Hu H, Zhou Q, Ao Y, Xiao C, Wan J, Wan Y, Xu H, Li Z, Yang X (2017) α-Amylase-and redox-responsive nanoparticles for tumor-targeted drug delivery. ACS Appl Mater Interfaces 9(22):19215–19230

    Article  PubMed  CAS  Google Scholar 

  70. Mobika J, Rajkumar M, Sibi SL, Priya VN (2020) Fabrication of bioactive hydroxyapatite/silk fibroin/gelatin cross-linked nanocomposite for biomedical application. Mater Chem Phys 250:123187

    Article  CAS  Google Scholar 

  71. Xu Z, Shi L, Yang M, Zhu L (2019) Preparation and biomedical applications of silk fibroin-nanoparticles composites with enhanced properties-a review. Mater Sci Eng, C 95:302–311

    Article  CAS  Google Scholar 

  72. Bian X, Wu P, Sha H, Qian H, Wang Q, Cheng L, Yang Y, Yang M, Liu B (2016) Anti-EGFR-iRGD recombinant protein conjugated silk fibroin nanoparticles for enhanced tumor targeting and antitumor efficiency. Onco Targets Ther 9:3153

    PubMed  PubMed Central  CAS  Google Scholar 

  73. Ascierto PA, Marincola FM (2011) Combination therapy: the next opportunity and challenge of medicine. Springer, pp 1–3

  74. Kazemi M, Mombeiny R, Tavakol S, Keyhanvar P, Mousavizadeh K (2019) A combination therapy of nanoethosomal piroxicam formulation along with iontophoresis as an anti-inflammatory transdermal delivery system for wound healing. Int Wound J 16(5):1144–1152

    Article  PubMed  PubMed Central  Google Scholar 

  75. Hanafi-Bojd MY, Ansari L, Malaekeh-Nikouei B (2016) Codelivery of anticancer drugs and siRNA by mesoporous silica nanoparticles. Ther Deliv 7(9):649–655

    Article  PubMed  CAS  Google Scholar 

  76. Wu M, Yang W, Chen S, Yao J, Shao Z, Chen X (2018) Size-controllable dual drug-loaded silk fibroin nanospheres through a facile formation process. J Mater Chem B 6(8):1179–1186

    Article  PubMed  CAS  Google Scholar 

  77. Wu P, Liu Q, Wang Q, Qian H, Yu L, Liu B, Li R (2018) Novel silk fibroin nanoparticles incorporated silk fibroin hydrogel for inhibition of cancer stem cells and tumor growth. Int J Nanomed 13:5405

    Article  CAS  Google Scholar 

  78. Pham DT, Saelim N, Tiyaboonchai W (2020) Paclitaxel loaded EDC-crosslinked fibroin nanoparticles: a potential approach for colon cancer treatment. Drug Deliv Transl Res 10:413–424

    Article  PubMed  CAS  Google Scholar 

  79. Perteghella S, Sottani C, Coccè V, Negri S, Cavicchini L, Alessandri G, Cottica D, Torre ML, Grignani E, Pessina A (2019) Paclitaxel-loaded silk fibroin nanoparticles: method validation by UHPLC-MS/MS to assess an exogenous approach to load cytotoxic drugs. Pharmaceutics 11(6):285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Du H, Liu W, Zhang M, Si C, Zhang X, Li B (2019) Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohyd Polym 209:130–144

    Article  CAS  Google Scholar 

  81. Thakur V, Guleria A, Kumar S, Sharma S, Singh K (2021) Recent advances in nanocellulose processing, functionalization and applications: a review. Mater Adv 2(6):1872–1895

    Article  CAS  Google Scholar 

  82. Raghav N, Sharma MR, Kennedy JF (2021) Nanocellulose: a mini-review on types and use in drug delivery systems. Carbohydr Polym Technol Appl 2:100031

    CAS  Google Scholar 

  83. You C, Ning L, Wu H, Huang C, Wang F (2021) A biocompatible and pH-responsive nanohydrogel based on cellulose nanocrystal for enhanced toxic reactive oxygen species generation. Carbohydr Polym 258:117685

    Article  PubMed  CAS  Google Scholar 

  84. Ning L, You C, Zhang Y, Li X, Wang F (2020) Synthesis and biological evaluation of surface-modified nanocellulose hydrogel loaded with paclitaxel. Life Sci 241:117137

    Article  PubMed  CAS  Google Scholar 

  85. Liu Y, Wang Q, Lu Y, Deng H, Zhou X (2020) Synergistic enhancement of cytotoxicity against cancer cells by incorporation of rectorite into the paclitaxel immobilized cellulose acetate nanofibers. Int J Biol Macromol 152:672–680

    Article  PubMed  CAS  Google Scholar 

  86. Sorokin AV, Kuznetsov VA, Lavlinskaya MS (2021) Synthesis of graft copolymers of carboxymethyl cellulose and N, N-dimethylaminoethyl methacrylate and their study as Paclitaxel carriers. Polym Bull 78(6):2975–2992

    Article  CAS  Google Scholar 

  87. Dai-Phung C, Le TG, Nguyen VH, Vu TT, Nguyen HQ, Kim JO, Yong CS, Nguyen CN (2020) PEGylated-paclitaxel and dihydroartemisinin nanoparticles for simultaneously delivering paclitaxel and dihydroartemisinin to colorectal cancer. Pharmaceut Res 37(7):1–11

    Google Scholar 

  88. Tran TB, Tran TH, Vu YH, Le TG, Do TT, Nguyen NT, Nguyen TT, Pham TB, Ngo TQ, Luong QA (2021) pH-responsive nanocarriers for combined chemotherapies: a new approach with old materials. Cellulose 28(6):3423–3433

    Article  CAS  Google Scholar 

  89. Kose R, Sunagawa N, Yoshida M, Tajima K (2013) One-step production of nanofibrillated bacterial cellulose (NFBC) from waste glycerol using Gluconacetobacter intermedius NEDO-01. Cellulose 20(6):2971–2979

    Article  CAS  Google Scholar 

  90. Akagi S, Ando H, Fujita K, Shimizu T, Ishima Y, Tajima K, Matsushima T, Kusano T, Ishida T (2021) Therapeutic efficacy of a paclitaxel-loaded nanofibrillated bacterial cellulose (PTX/NFBC) formulation in a peritoneally disseminated gastric cancer xenograft model. Int J Biol Macromol 174:494–501

    Article  PubMed  CAS  Google Scholar 

  91. Datz S, Illes B, Gößl D, Schirnding CV, Engelke H, Bein T (2018) Biocompatible crosslinked β-cyclodextrin nanoparticles as multifunctional carriers for cellular delivery. Nanoscale 10(34):16284–16292

    Article  PubMed  CAS  Google Scholar 

  92. Zhao M, Li B, Wang P, Lu L, Zhang Z, Liu L, Wang S, Li D, Wang R, Zhang F (2018) Supramolecularly engineered NIR-II and Upconversion nanoparticles in vivo assembly and disassembly to improve bioimaging. Adv Mater 30(52):1804982

    Article  Google Scholar 

  93. Yao X, Huang P, Nie Z (2019) Cyclodextrin-based polymer materials: from controlled synthesis to applications. Prog Polym Sci 93:1–35

    Article  CAS  Google Scholar 

  94. Puiu RA, Balaure PC, Constantinescu E, Grumezescu AM, Andronescu E, Oprea O-C, Vasile BS, Grumezescu V, Negut I, Nica IC (2021) Anti-cancer nanopowders and maple-fabricated thin coatings based on spions surface modified with paclitaxel loaded β-cyclodextrin. Pharmaceutics 13(9):1356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Yu HS, Lee ES (2020) Honeycomb-like pH-responsive γ-cyclodextrin electrospun particles for highly efficient tumor therapy. Carbohyd Polym 230:115563

    Article  CAS  Google Scholar 

  96. Varan G, Varan C, Öztürk SC, Benito JM, Esendağlı G, Bilensoy E (2021) Therapeutic efficacy and biodistribution of paclitaxel-bound amphiphilic cyclodextrin nanoparticles: analyses in 3D tumor culture and tumor-bearing animals in vivo. Nanomaterials 11(2):515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Hyun H, Park MH, Jo G, Lee BY, Choi JW, Chun HJ, Kim HS, Yang DH (2021) Injectable glycol chitosan hydrogel containing folic acid-functionalized cyclodextrin-paclitaxel complex for breast cancer therapy. Nanomaterials 11(2):317

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Pei Q, Hu X, Wang L, Liu S, Jing X, Xie Z (2017) Cyclodextrin/paclitaxel dimer assembling vesicles: reversible morphology transition and cargo delivery. ACS Appl Mater Interfaces 9(32):26740–26748

    Article  PubMed  CAS  Google Scholar 

  99. Shen Q, Shen Y, Jin F, Du Y-Z, Ying X-Y (2020) Paclitaxel/hydroxypropyl-β-cyclodextrin complex-loaded liposomes for overcoming multidrug resistance in cancer chemotherapy. J Liposome Res 30(1):12–20

    Article  PubMed  CAS  Google Scholar 

  100. Nasirizadeh S, Jaafari MR, Iranshahi M, Golmohammadzadeh S, Mahmoudi A, Ansari L, Mosallaei N, Malaekeh-Nikouei B (2020) The effect of efflux pump inhibitors on in vitro and in vivo efficacy of solid lipid nanoparticles containing SN38. J Drug Deliv Sci Technol 60:101969

    Article  CAS  Google Scholar 

  101. Song X, Wen Y, Zhu J-L, Zhao F, Zhang Z-X, Li J (2016) Thermoresponsive delivery of paclitaxel by β-cyclodextrin-based poly (N-isopropylacrylamide) star polymer via inclusion complexation. Biomacromol 17(12):3957–3963

    Article  CAS  Google Scholar 

  102. Xu J, Ren X, Guo T, Sun X, Chen X, Patterson LH, Li H, Zhang J (2019) NLG919/cyclodextrin complexation and anti-cancer therapeutic benefit as a potential immunotherapy in combination with paclitaxel. Eur J Pharm Sci 138:105034

    Article  PubMed  CAS  Google Scholar 

  103. Zhang YM, Zhang NY, Xiao K, Yu Q, Liu Y (2018) Photo-controlled reversible microtubule assembly mediated by paclitaxel-modified cyclodextrin. Angew Chem 130(28):8785–8789

    Article  Google Scholar 

  104. Yan C, Liang N, Li Q, Yan P, Sun S (2019) Biotin and arginine modified hydroxypropyl-β-cyclodextrin nanoparticles as novel drug delivery systems for paclitaxel. Carbohyd Polym 216:129–139

    Article  CAS  Google Scholar 

  105. Zeng W, Law BYK, Wong VKW, Chan DSB, Mok SWF, Gao JJY, Ho RKY, Liang X, Li JH, Lee MT (2020) HM30181A, a potent P-glycoprotein inhibitor, potentiates the absorption and in vivo antitumor efficacy of paclitaxel in an orthotopic brain tumor model. Cancer Biol Med 17(4):986

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Wu Y-L, Li Z (2019) The perspectives of using unimolecular micelles in nanodrug formulation. Ther Deliv 10(6):333–335

    Article  PubMed  CAS  Google Scholar 

  107. Wang J-J, Qian Y, Qian C, Yao J-Y, Bi X-L (2020) Paclitaxel-loaded cyclodextrin-cored unimolecular micelles and their in vivo behavior. React Funct Polym 150:104542

    Article  CAS  Google Scholar 

  108. Varan G, Öncül S, Ercan A, Benito JM, Mellet CO, Bilensoy E (2016) Cholesterol-targeted anticancer and apoptotic effects of anionic and polycationic amphiphilic cyclodextrin nanoparticles. J Pharm Sci 105(10):3172–3182

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Akbari or Esmaiel Jabbari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramezanpour, A., Ansari, L., Rahimkhoei, V. et al. Recent advances in carbohydrate-based paclitaxel delivery systems. Polym. Bull. 81, 1043–1069 (2024). https://doi.org/10.1007/s00289-023-04759-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04759-9

Keywords

Navigation