Skip to main content
Log in

Polyurethane latent catalysts obtained by emulsion solvent evaporation

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Many efforts have been made to develop catalysts for polyurethanes (PUs) due to their significant roles in the manufacturing process. However, it is still a long-standing technical issue to manipulate the catalytic activity and enhance the storage stability of PU precursors by using suitable catalyst. In this work, a new microcapsule thermolatent catalyst was prepared by emulsion solvent evaporation (ESE) method with a dibutyltin dilaurate (DBTDL) core and a polymeric shell. The glass transition temperature (Tg) of polymeric shell was utilized as threshold temperature. By changing the composition of acrylate copolymers, the glass transition temperature of polymeric shell could be controlled, which further moderated the latency and catalytic activity of ESE microcapsule catalysts. Compared to DBTDL, all ESE microcapsule catalysts showed certain latency at 30 °C. The catalytic activity of ESE microcapsules was rapidly increased at 70 °C. In the ESE microcapsule catalysts, ESE1 sample exhibited excellent performance due to the suitable Tg and uniform morphology. Compared to phenyl mercury neodecanoate and DBU, which are traditional thermolatent catalysts, ESE1 sample showed more excellent latency and catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Burelo M, Martínez A, Cruz-Morales JA, Tlenkopatchev MA, Gutiérrez S (2019) Metathesis reaction from bio-based resources: synthesis of diols and macrodiols using fatty alcohols β-citronellol and natural rubber. Polym Degrad Stab. https://doi.org/10.1016/j.polymdegradstab.2019.05.021.‬

    Article  Google Scholar 

  2. Pawar MS, Kadam AS, Dawane BS, Yemul OS (2016) Synthesis and characterization of rigid polyurethane foams from algae oil using biobased chain extenders. Polym Bull 73:727–741. https://doi.org/10.1007/s00289-015-1514-1

    Article  CAS  Google Scholar 

  3. Chung YC, Bae JC, Choi JW, Chun BC (2019) The preparation of hydrogel-like polyurethane using the graft polymerization of N, N-dimethylaminoethyl methacrylate and acrylic acid. Polym Bull 76:6371–6386. https://doi.org/10.1007/s00289-019-02726-x

    Article  CAS  Google Scholar 

  4. Ranote S, Kumar D, Kumari S, Kumar R, Chauhan GS, Joshi V (2019) Green synthesis of Moringa oleifera gum-based bifunctional polyurethane foam braced with ash for rapid and efficient dye removal. Chem Eng J 361:1586–1596. https://doi.org/10.1016/j.cej.2018.10.194

    Article  CAS  Google Scholar 

  5. Sarojini KS, Indumathi MP, Rajarajeswari GR (2019) Mahua oil-based polyurethane/chitosan/nano ZnO composite films for biodegradable food packaging applications. Int J Biol Macromol 124:163–174. https://doi.org/10.1016/j.ijbiomac.2018.11.195

    Article  CAS  Google Scholar 

  6. Xi XD, Wu ZG, Pizzi A, Gerardin C, Lei H, Zhang BG, Du GB (2019) Non-isocyanate polyurethane adhesive from sucrose used for particleboard. Wood Sci Technol 53(2):393–405. https://doi.org/10.1007/s00226-019-01083-2

    Article  CAS  Google Scholar 

  7. Patil CK, Rajput SD, Marathe RJ, Kulkarni RD, Phadnis H et al (2017) Synthesis of bio-based polyurethane coatings from vegetable oil and dicarboxylic acids. Prog Org Coat 106:87–95. https://doi.org/10.1016/j.porgcoat.2016.11.024

    Article  CAS  Google Scholar 

  8. Liu JL, Yang YC, Gao B, Li YCC, Xie JZ (2019) Bio-based elastic polyurethane for controlled-release urea fertilizer: fabrication, properties, swelling and nitrogen release characteristics. J Clean Prod 209:528–537. https://doi.org/10.1016/j.jclepro.2018.10.263

    Article  CAS  Google Scholar 

  9. Mahmood N, Yuan ZS, Schmidt J, Xu CB (2016) Depolymerization of lignins and their applications for the preparation of polyols and rigid polyurethane foams: a review. Renew Sust Energ Rev 60:317–329. https://doi.org/10.1016/j.rser.2016.01.037

    Article  CAS  Google Scholar 

  10. Sonjui T, Jiratumnukul N (2015) Physical properties of bio-based polyurethane foams from bio-based succinate polyols. Cell Polym 34(6):353–366. https://doi.org/10.1177/026248931503400604

    Article  CAS  Google Scholar 

  11. Sonnabend M, Aubin SG, Schmidt AM, Leimenstoll MC (2021) Sophorolipid-based oligomers as polyol components for polyurethane systems. Polym-Basel 13:2001. https://doi.org/10.3390/polym13122001

    Article  CAS  Google Scholar 

  12. Dias G, Prado M, Le Roux C, Poirier M, Micoud P, Ligabue R, Martin F, Einloft S (2020) Synthetic talc as catalyst and filler for waterborne polyurethane-based nanocomposite synthesis. Polym Bull 77(2):975–987. https://doi.org/10.1007/s00289-019-02789-w

    Article  CAS  Google Scholar 

  13. Kim KM, Park HW, Shim GS et al (2020) Mechanical properties and decomposition performance of peelable coating containing UiO-66 catalyst and waterborne silane-terminated polyurethane dispersions. J Mater Sci 55(6):2604–2617. https://doi.org/10.1007/s10853-019-04184-2

    Article  CAS  Google Scholar 

  14. Muuronen M, Deglmann P, Tomovi Z (2019) Design principles for rational polyurethane catalyst development. J Org Chem 84(12):8202–8209. https://doi.org/10.1021/acs.joc.9b01319

    Article  CAS  PubMed  Google Scholar 

  15. Bai L, Zheng JP (2020) A transparent, high refractive, shape-memory, healable, and recyclable phenolic polyurethane thermoset: unexpected roles of bromine substituents and tertiary amine catalysts. Macromol Chem Phys 221(5):1900493. https://doi.org/10.1002/macp.201900493

    Article  CAS  Google Scholar 

  16. Sridaeng D, Limsirinawa A, Sirojpornphasut P, Chawiwannakorn S, Chantarasiri N (2015) Metal acetylacetonate-amine and metal nitrate-amine complexes as low-emission catalysts for rigid polyurethane foam preparation. J Appl Polym Sci 132(31):42332. https://doi.org/10.1002/app.42332

    Article  CAS  Google Scholar 

  17. Wegener G, Brandt M, Duda L et al (2001) Trends in industrial catalysis in the polyurethane industry. Appl Catal A-Gen 221(1–2):303–335. https://doi.org/10.1016/s0926-860x(01)00910-3

    Article  CAS  Google Scholar 

  18. Sardon H, Pascual A, Mecerreyes D, Taton D, Cramail H, Hedrick JL (2015) Synthesis of polyurethanes using organocatalysis: a perspective. Macromolecules 48(10):3153–3165. https://doi.org/10.1021/acs.macromol.5b00384

    Article  CAS  Google Scholar 

  19. Villegas-Villalobos S, Díaz LE, Vilariño-Feltrer G et al (2018) Effect of an organotin catalyst on the physicochemical properties and biocompatibility of castor oil-based polyurethane/cellulose composites. J Mater Res 33(17):2598–2611. https://doi.org/10.1557/jmr.2018.286

    Article  CAS  Google Scholar 

  20. Bakirova IN, Kirillova AS (2013) Effect of organometallic catalysts on the synthesis process and properties of molded polyurethane. Russ J Appl Chem 86(9):1399–1403. https://doi.org/10.1134/S1070427213090141

    Article  CAS  Google Scholar 

  21. Devendra R, Edmonds NR, Söhnel T (2013) Computational and experimental investigations of the urethane formation mechanism in the presence of organotin(IV) carboxylate catalysts. J Mol Catal A-Chem 366:126–139. https://doi.org/10.1016/j.molcata.2012.09.015

    Article  CAS  Google Scholar 

  22. Sousa ACA, Pastorinho MR, Takahashi S, Tanabe S (2014) History on organotin compounds, from snails to humans. Environ Chem Lett 12(1):117–137. https://doi.org/10.1007/s10311-013-0449-8

    Article  CAS  Google Scholar 

  23. Bantu B, Pawar GM, Decker U et al (2009) CO2 and SnII adducts of N-Heterocyclic carbenes as delayed-action catalysts for polyurethane synthesis. Chem Eur J 15:3103–3109. https://doi.org/10.1002/chem.200802670

    Article  CAS  PubMed  Google Scholar 

  24. Jousseaume B, Gouron V, Maillard B, Pereyre M, Frances JM (1990) New latent organotin catalysts: preparation and mechanism of the thermal decomposition of bis[2-(acyloxy)alkyl]diorganotins. Organometallics 9:1330–1331. https://doi.org/10.1021/om00118a073

    Article  CAS  Google Scholar 

  25. Jousseaume B, Gouron V, Pereyre M, Frances J-M (1991) Silicone Curing and polyurethane preparation promoted by latent organotin catalysts. Appl Organomet Chem 5(2):135–138. https://doi.org/10.1002/aoc.590050212

    Article  CAS  Google Scholar 

  26. Gao J, Zhang P, Lei JX (2007) Synthesis of 2-phenyl-3-hydroxyethanyl-1,3-oxazolidine and its application as latent curing agents. J Appl Polym Sci 106:1343–1346. https://doi.org/10.1002/app.26582

    Article  CAS  Google Scholar 

  27. Harling S, Meola G, Schaible S, Schulthess A, Braendli C, Meincke O (2013) Latent reactive polyurethanes based on toluenediisocyanate-uretdione and polycaprolactones. Int J Adhes Adhes 46:26–33. https://doi.org/10.1016/j.ijadhadh.2013.05.012

    Article  CAS  Google Scholar 

  28. Deyrail Y, Zydowicz N, Cassagnau P (2004) Polymer crosslinking controlled by release of catalyst encapsulated in polycarbonate micro-spheres. Polymer 45:6123–6131. https://doi.org/10.1016/j.polymer.2004.06.064

    Article  CAS  Google Scholar 

  29. Yuan L, Chen F, Gu AJ et al (2014) Synthesis of poly(urea–formaldehyde) encapsulated dibutyltin dilaurate through the self-catalysis of core materials. Polym Bull 71:261–273. https://doi.org/10.1007/s00289-013-1059-0

    Article  CAS  Google Scholar 

  30. Kamiya K, Suzuki N (2016) A low-temperature fast curing latent catalyst microencapsulated in a porous resin structure. Int J Adhes Adhes 68:333–340. https://doi.org/10.1016/j.ijadhadh.2016.04.013

    Article  CAS  Google Scholar 

  31. Kontkanen ML, Haukka M (2012) Microencapsulated ruthenium catalyst for the hydroformylation of 1-hexene. Catal Commun 23:25–29. https://doi.org/10.1016/j.catcom.2012.02.019

    Article  CAS  Google Scholar 

  32. Bijlard AC, Hansen A, Lieberwirth I, Landfester K, Taden A (2016) A nanocapsule-based approach toward physical thermolatent catalysis. Adv Mater 28(30):6372–6377. https://doi.org/10.1002/adma.201600830

    Article  CAS  PubMed  Google Scholar 

  33. Gaytán I, Burelo M, Loza-Tavera H (2021) Current status on the biodegradability of acrylic polymers: microorganisms enzymes and metabolic pathways involved. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-020-11073-1.‬

    Article  PubMed  PubMed Central  Google Scholar 

  34. Liu B, Chen YY, Li CX et al (2015) Poly(Acrylic Acid) modification of Nd3+-sensitized upconversion nanophosphors for highly efficient UCL Imaging and pH-responsive drug delivery. Adv Funct Mater 25:4717–4729. https://doi.org/10.1002/adfm.201501582

    Article  CAS  Google Scholar 

  35. Zendehdel M, Barati A, Alikhani H (2011) Removal of heavy metals from aqueous solution by poly(acrylamide-co-acrylic acid) modified with porous materials. Polym Bull 67:343–360. https://doi.org/10.1007/s00289-011-0464-5

    Article  CAS  Google Scholar 

  36. Han X, Zhang XX, Zhu HF et al (2013) Effect of composition of PDMAEMA-b- PAA block copolymers on their pH- and temperature-responsive behaviors. Langmuir 29:1024–1034. https://doi.org/10.1021/la3036874

    Article  CAS  PubMed  Google Scholar 

  37. Evingur GA, Pekcan O (2018) Optical energy band gap of PAAm-GO composites. Compos Struct 183:212–215. https://doi.org/10.1016/j.compstruct.2017.02.058

    Article  Google Scholar 

  38. Tang N, Peng Z, Guo R et al (2017) Thermal transport in soft PAAm hydrogels. Polymers 9:688. https://doi.org/10.3390/polym9120688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chmielarz P, Sobkowiak A (2017) Ultralow ppm seATRP synthesis of PEO-b-PBA copolymers. J polym Res 24:77. https://doi.org/10.1007/s10965-017-1235-2

    Article  CAS  Google Scholar 

  40. Kopec M, Yuan R, Gottlieb E et al (2017) Polyacrylonitrile-b-poly(butyl acrylate) block copolymers as precursors to mesoporous nitrogen-doped carbons: synthesis and nanostructure. Macromolecules 50(7):2759–2767. https://doi.org/10.1021/acs.macromol.6b02678

    Article  CAS  Google Scholar 

  41. Chau JLH, Hsieh CC, Lin YM, Li AK (2008) Preparation of transparent silica–PMMA nanocomposite hard coatings. Prog Org Coat 62:436–439. https://doi.org/10.1016/j.porgcoat.2008.02.005

    Article  CAS  Google Scholar 

  42. Ali U, Abd Karim KJB, Buang NA (2015) A review of the properties and applications of poly (Methyl Methacrylate) (PMMA). Polym Rev 55(4):678–705. https://doi.org/10.1080/15583724.2015.1031377

    Article  CAS  Google Scholar 

  43. Wei SY, Ma L, Hendrickson KE, Tu ZY, Archer LA (2015) Metal-sulfur battery cathodes based on PAN sulfur composites. J Am Chem Soc 137(37):12143–12152. https://doi.org/10.1021/jacs.5b08113

    Article  CAS  PubMed  Google Scholar 

  44. Newcomb BA (2016) Processing, structure and properties of carbon fibers. Compos Part A-Appl S 91:262–282. https://doi.org/10.1016/j.compositesa.2016.10.018

    Article  CAS  Google Scholar 

  45. Mistlberger G, Medina-Castillo AL, Borisov SM, Mayr T, Fernández-Gutiérrez A, Fernandez-Sanchez JF, Klimant I (2011) Mini-emulsion solvent evaporation: a simple and versatile way to magnetic nanosensors. Microchim Acta 172(3–4):299–308. https://doi.org/10.1007/s00604-010-0492-0

    Article  CAS  Google Scholar 

  46. Yi Z, Johannes F, Katharina L, Daniel C (2012) Encapsulation of self-healing agents in polymer nanocapsules. Small 8(19):2954–2958. https://doi.org/10.1002/smll.201200530

    Article  CAS  Google Scholar 

  47. Maija-Liisa K, Matti H (2012) Microencapsulated ruthenium catalyst for the hydroformylation of 1-hexene. Catal Commun 23:25–29. https://doi.org/10.1016/j.catcom.2012.02.019

    Article  CAS  Google Scholar 

  48. Fox TG, Fox PJ (1949) Second-order transition temperatures and related properties of polystyrene I influence of molecular weight. J Appl Phys 21(6):581–591. https://doi.org/10.1063/1.1699711

    Article  Google Scholar 

  49. Mayo FR, Lewis FM (1944) Copolymerization. I. a basis for comparing the behavior of monomers in copolymerization; the copolymerization of styrene and methyl methacrylate. J Am Chem Soc 66(9):1594–1601. https://doi.org/10.1021/ja01237a052

    Article  CAS  Google Scholar 

  50. Alb AM, Enohnyaket P, Drenski MF, Head A, Reed AW, Reed WF (2006) Online monitoring of copolymerization involving comonomers of similar spectral characteristics. Macromolecules 39(17):5705–5713. https://doi.org/10.1021/ma060800f

    Article  CAS  Google Scholar 

  51. Hakim M, Verhoeven V, Mcmanus NT, Dubé MA, Penlidis A (2000) High-temperature solution polymerization of butyl acrylate/methyl methacrylate: reactivity ratio estimation. J Appl Polym Sci 77(3):602–609. https://doi.org/10.1002/(sici)1097-4628(20000718)77:3%3c602::aid-app15%3e3.0.co;2-f

    Article  CAS  Google Scholar 

  52. Barton AFM (1975) Solubility parameters. Chem Rev 75(6):731–753. https://doi.org/10.1021/cr60298a003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work was supported by the Dow Chemical Co. funding. Thanks to Yang Gao, Gang Wang and Mengyu Chen for their kind support to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingfeng Yu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Dong, H., Yu, Y. et al. Polyurethane latent catalysts obtained by emulsion solvent evaporation. Polym. Bull. 80, 3377–3393 (2023). https://doi.org/10.1007/s00289-022-04225-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04225-y

Keywords

Navigation