Skip to main content

Advertisement

Log in

Differences between Cu- and Fe–Cu nanoflowers in their interactions with fluorescent probes ANS and Fura-2 and proteins albumin and thrombin

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Among nanomaterials, we can now distinguish a special class called nanoflowers (NFs). These new nanostructures have aroused the interest of scientists due to the topographic features of nanolayers, the special location which allows a higher surface-to-volume ratio compared to classical spherical nanoparticles, thereby significantly increasing the efficiency of surface reactions for nanoflowers. The main value of nanoflowers is their action as enzyme stabilizers. A protein stability is usually enhanced by immobilization on a nanoflower surface through charge affinity and covalent bonds. The possibility of their use in vivo in biocatalysis, biosensors and medicine has been also investigated. We now report on the synthesis of two different nanoflowers: Cu nanoflowers and Fe3+ attached Cu nanoflowers and their interaction with two fluorescent probes, anilino-1-naphthalenesulfonic acid (ANS) and Fura 2, and two proteins, human serum albumin (HSA) and thrombin. Nanoflowers did not bind ANS, but bind efficiently to Fura 2 and both proteins. Modification of Cu–NFs by Fe3+ leads to significant changes in their binding capacity to fluorescent probe Fura 2 and both proteins. Their ability to bind fluorescent probe Fura 2 increased eightfold, and their ability to bind HSA and thrombin increased five times. Regarding Fe3+–Cu–NFs, a difference in binding between HSA and thrombin was found that can be explained by their structural features. Our data indicate the possibility of using studied nanoflowers for sorption of fluorescent probes and proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cui J, Jia S (2017) Organic–inorganic hybrid nanoflowers: a novel host platform for immobilizing biomolecules. Coord Chem Rev. https://doi.org/10.1016/j.ccr.2017.09.008

    Article  Google Scholar 

  2. Sassolas A, Blum LJ, Leca-Bouvier BD (2012) Immobilization strategies to develop enzymatic biosensors. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2011.09.003

    Article  PubMed  Google Scholar 

  3. Datta S, Christena LR, Rajaram YRS (2013) Enzyme immobilization: an overview on techniques and support materials. 3 Biotech. https://doi.org/10.1007/s13205-012-0071-7

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kim J, Grate JW, Wang P (2008) Nanobiocatalysis and its potential applications. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2008.07.009

    Article  PubMed  Google Scholar 

  5. Ge J, Lu D, Liu Z, Liu Z (2009) Recent advances in nanostructured biocatalysts. Biochem Eng J. https://doi.org/10.1016/j.bej.2009.01.002

    Article  Google Scholar 

  6. Luckarift HR, Spain JC, Naik RR, Stone MO (2004) Enzyme immobilization in a biomimetic silica support. Nat Biotechnol. https://doi.org/10.1038/nbt931

    Article  PubMed  Google Scholar 

  7. Mateo C, Grazu V, Palomo JM, Lopez-Gallego F, Fernandez-Lafuente R, Guisan JM (2007) Immobilization of enzymes on heterofunctional epoxy supports. Nat Protoc. https://doi.org/10.1038/nprot.2007.133

    Article  PubMed  Google Scholar 

  8. Ge J, Lei J, Zare RN (2012) Protein-inorganic hybrid nanoflowers. Nat Nanotechnol. https://doi.org/10.1038/nnano.2012.80

    Article  PubMed  Google Scholar 

  9. Tran TD, Il Kim M (2018) Organic-inorganic hybrid nanoflowers as potent materials for biosensing and biocatalytic applications. Biochip J. https://doi.org/10.1007/s13206-018-2409-7

    Article  Google Scholar 

  10. Negahdary M, Heli H (2018) Applications of nanoflowers in biomedicine. Recent Pat Nanotechnol. https://doi.org/10.2174/1872210511666170911153428

    Article  PubMed  Google Scholar 

  11. Altinkaynak C, Tavlasoglu S, Özdemir N, Ocsoy I (2016) A new generation approach in enzyme immobilization: organic-inorganic hybrid nanoflowers with enhanced catalytic activity and stability. Enzyme Microb Technol. https://doi.org/10.1016/j.enzmictec.2016.06.011

    Article  PubMed  Google Scholar 

  12. Aydemir D, Geçili F, Özdemir N, UlusuNuray N (2020) A novel triple enzyme-inorganic hybrid nanoflower (TrpE@ihNF) with enhanced catalytic activity and stability. J Biosci Bioeng 129:679–686. https://doi.org/10.1016/j.jbiosc.2020.01.008

    Article  CAS  PubMed  Google Scholar 

  13. Zhu J, Wen M, Wen W, Du D, Zhang X, Wang S, Lin Y (2018) Recent progress in biosensors based on organic-inorganic hybrid nanoflowers. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2018.08.058

    Article  PubMed  PubMed Central  Google Scholar 

  14. Shcharbin D, Halets-Bui I, Abashkin V, Dzmitruk V, Loznikova S, Odabaşı M, Acet Ö, Önal B, Özdemir N, Shcharbina N, Bryszewska M (2019) Hybrid metal-organic nanoflowers and their application in biotechnology and medicine. Coll Surf B Biointerfaces 182:110354. https://doi.org/10.1016/j.colsurfb.2019.110354

    Article  CAS  Google Scholar 

  15. Gurbuz F, Ceylan Ş, Odabaşi M, Codd GA (2016) Hepatotoxic microcystin removal using pumice embedded monolithic composite cryogel as an alternative water treatment method. Water Res. https://doi.org/10.1016/j.watres.2015.12.042

    Article  PubMed  Google Scholar 

  16. Önal B, Acet Ö, Dzmitruk V, Halets-Bui I, Shcharbin D, Özdemir N, Odabaşı M (2021) First protein affinity application of Cu2+-bound pure inorganic nanoflowers. Polym Bull. https://doi.org/10.1007/s00289-021-03557-5

    Article  Google Scholar 

  17. Cui J, Zhao Y, Liu R, Zhong C, Jia S (2016) Surfactant-activated lipase hybrid nanoflowers with enhanced enzymatic performance. Sci Rep. https://doi.org/10.1038/srep27928

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bian H, Wang G, Cao M, Wang Z, Cui J (2020) Improved biodegradation of polyvinyl alcohol by hybrid nanoflowers of degrading enzymes from bacillus niacini. Korean J Chem Eng. https://doi.org/10.1007/s11814-020-0547-9

    Article  Google Scholar 

  19. Li C, Zhao J, Zhang Z, Jiang Y, Bilal M, Jiang Y, Jia S, Cui J (2020) Self-assembly of activated lipase hybrid nanoflowers with superior activity and enhanced stability. Biochem Eng J. https://doi.org/10.1016/j.bej.2020.107582

    Article  Google Scholar 

  20. Önal B, Acet Ö, Sanz R, Sanz-Pérez ES, Erdönmez D, Odabaşı M (2019) Co-evaluation of interaction parameters of genomic and plasmid DNA for a new chromatographic medium. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.09.068

    Article  PubMed  Google Scholar 

  21. Swain SK, Sarkar D (2013) Study of BSA protein adsorption/release on hydroxyapatite nanoparticles. Appl Surf Sci 286:99–103

    Article  CAS  Google Scholar 

  22. Galdino FE, Picco AS, Sforca ML, Cardoso MB, Loh W (2020) Effect of particle functionalization and solution properties on the adsorption of bovine serum albumin and lysozyme onto silica nanoparticles. Coll Surf B Biointerfaces. https://doi.org/10.1016/j.colsurfb.2019.110677

    Article  Google Scholar 

  23. Zhao L, Li L, Zhu C, Ghulam M, Qu F (2020) pH-responsive polymer assisted aptamer functionalized magnetic nanoparticles for specific recognition and adsorption of proteins. Anal Chim Acta. https://doi.org/10.1016/j.aca.2019.11.001

    Article  PubMed  Google Scholar 

  24. Serinbaş A, Önal B, Acet Ö, Özdemir N, Dzmitruk V, Halets-Bui I, Shcharbin D, Odabaşı M (2020) A new application of inorganic sorbent for biomolecules: IMAC practice of Fe3+-nano flowers for DNA separation. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2020.111020

    Article  Google Scholar 

  25. Luo YK, Song F, Wang XL, Wang YZ (2017) Pure copper phosphate nanostructures with controlled growth: a versatile support for enzyme immobilization. Cryst Eng Comm. https://doi.org/10.1039/c7ce00466d

    Article  Google Scholar 

  26. Gulmez C, Altinkaynak C, Özdemir N, Atakisi O (2018) Proteinase K hybrid nanoflowers (P-hNFs) as a novel nanobiocatalytic detergent additive. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2018.07.195

    Article  PubMed  Google Scholar 

  27. Schönbrunn E, Eschenburg S, Luger K, Kabsch W, Amrhein N (2000) Structural basis for the interaction of the fluorescence probe 8-anilino-1-naphthalene sulfonate (ANS) with the antibiotic target MurA. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.120120397

    Article  PubMed  PubMed Central  Google Scholar 

  28. Matulis D, Baumann CG, Bloomfield VA, Lovrien RE (1999) 1-Anilino-8-naphthalene sulfonate as a protein conformational tightening agent. Biopolymers. https://doi.org/10.1002/(SICI)1097-0282(199905)49:6%3c451::AID-BIP3%3e3.0.CO;2-6

    Article  PubMed  Google Scholar 

  29. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260(6):3440–3450

    Article  CAS  Google Scholar 

  30. Marchi B, Burlando B, Panfoli I, Viarengo A (2000) Interference of heavy metal cations with fluorescent Ca2+ probes does not affect Ca2+ measurements in living cells. Cell Calcium. https://doi.org/10.1054/ceca.2000.0155

    Article  PubMed  Google Scholar 

  31. Curry S, Mandelkow H, Brick P, Franks N (1998) Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nat Struct Biol. https://doi.org/10.1038/1869

    Article  PubMed  Google Scholar 

  32. Petitpas I, Petersen CE, Ha CE, Bhattacharya AA, Zunszain PA, Ghuman J, Bhagavan NV, Curry S (2003) Structural basis of albumin-thyroxine interactions and familial dysalbuminemic hyperthyroxinemia. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1137188100

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhang E, Tulinsky A (1997) The molecular environment of the Na+ binding site of thrombin. Biophys Chem. https://doi.org/10.1016/S0301-4622(96)02227-2

    Article  PubMed  Google Scholar 

  34. Di Cera E (2008) Thrombin. Mol Asp Med. https://doi.org/10.1016/j.mam.2008.01.001

    Article  Google Scholar 

  35. Meloun B, Morávek L, Kostka V (1975) Complete amino acid sequence of human serum albumin. FEBS Lett. https://doi.org/10.1016/0014-5793(75)80242-0

    Article  PubMed  Google Scholar 

  36. Porath J, Carlsson J, Olsson I, Belfrage G (1975) Metal chelate affinity chromatography, a new approach to protein fractionation. Nature. https://doi.org/10.1038/258598a0

    Article  PubMed  Google Scholar 

  37. Hansen P, Andersson L, Lindeberg G (1996) Purification of cysteine-containing synthetic peptides via selective binding of the α-amino group to immobilised Cu2+ and Ni2+ ions. J Chromatogr A. https://doi.org/10.1016/0021-9673(95)00806-3

    Article  PubMed  Google Scholar 

  38. Arnold FH (1991) Metal-affinity separations: a new dimension in protein processing. Nat Biotechnol. https://doi.org/10.1038/nbt0291-151

    Article  Google Scholar 

  39. Porath J, Olin B (1983) Immobilized metal ion affinity adsorption and immobilized metal ion affinity chromatography of biomaterials. Serum protein affinities for gel-immobilized iron and nickel ions. Biochemistry. https://doi.org/10.1021/bi00276a015

    Article  PubMed  Google Scholar 

  40. Gutiérrez R, Martín Del Valle EM, Galán MA (2007) Immobilized metal-ion affinity chromatography: status and trends. Sep Purif Rev. https://doi.org/10.1080/15422110601166007

    Article  Google Scholar 

  41. Shcharbin D, Klajnert B, Bryszewska M (2005) The effect of PAMAM dendrimers on human and bovine serum albumin at different pH and NaCl concentrations. J Biomater Sci Polym Ed 16:1081–1093. https://doi.org/10.1163/1568562054798518

    Article  CAS  PubMed  Google Scholar 

  42. Peters T (1996) All about albumin: biochemistry. Genetic and Medical Applications Elsevier, pp 133–187

    Google Scholar 

  43. Shakhbazau A, Shcharbin D, Seviaryn I, Goncharova N, Kosmacheva S, Potapnev M, Gabara B, Ionov M, Bryszewska M (2010) Use of polyamidoamine dendrimers to engineer BDNF-producing human mesenchymal stem cells. Mol Biol Rep 37:2003–2008. https://doi.org/10.1007/s11033-009-9651-y

    Article  CAS  PubMed  Google Scholar 

  44. Dzmitruk V, Apartsin E, Ihnatsyeu-Kachan A, Abashkin V, Shcharbin D, Bryszewska M (2018) Dendrimers show promise for siRNA and microrna therapeutics. Pharmaceutics. https://doi.org/10.3390/pharmaceutics10030126

    Article  PubMed  PubMed Central  Google Scholar 

  45. Shcharbin D, Shcharbina N, Dzmitruk V, Pedziwiatr-Werbicka E, Ionov M, Mignani S, de la Mata FJ, Gómez R, Muñoz-Fernández MA, Majoral J-P, Bryszewska M (2017) Dendrimer-protein interactions versus dendrimer-based nanomedicine. Coll Surf B Biointerfaces. https://doi.org/10.1016/j.colsurfb.2017.01.041

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Technological Research Council of Turkey (TUBITAK) (Grant Number:118Z037) and by the State Committee of Science and Technology of Belarus and Belarussian Republican Foundation for Fundamental Research, grants B18TUB-001, B21TUB-001, B21KORG-001; by the Polish National Agency for Academic Exchange, grant EUROPARTNER, No. PPI/APM/2018/1/00007/U/001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dzmitry Shcharbin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halets-Bui, I., Dzmitruk, V., Abashkin, V. et al. Differences between Cu- and Fe–Cu nanoflowers in their interactions with fluorescent probes ANS and Fura-2 and proteins albumin and thrombin. Polym. Bull. 79, 5247–5259 (2022). https://doi.org/10.1007/s00289-021-03773-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03773-z

Keywords

Navigation