Skip to main content
Log in

Influence of Fe2O3 in ZnO/GO-based dye-sensitized solar cell

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This work aims to study the influence of Fe2O3 in ZnO/GO-based DSSC incorporating PAN-based gel electrolyte. ZnO–Fe2O3/GO thin films and gel electrolyte were prepared using the sol–gel technique via spin-coating and polymerization of polyacrylonitrile (PAN) methods, respectively. The insertion of Fe2O3 in ZnO/GO improved the open-circuit voltage and fill factor significantly. However, large amount of Fe2O3 (0.3%) inhibited the electron transport with high electron recombination rate (keff = 3044.62 s−1). The main reason for the low efficiency in ZnO–Fe2O3(0.3%)/GO is due to the energy band misalignment with the failure of the excited electron from the LUMO of dye into the conduction band of ZnO–Fe2O3(0.3%)/GO. The study found that the optimum concentration of Fe2O3 is 0.2% for an efficient DSSC. ZnO–Fe2O3(0.2%)/GO-based DSSC exhibited slow electron recombination of 0.751 s−1. Moreover, the fine nanoparticles of ZnO–Fe2O3(0.2%)/GO observed through field emission electron microscopy show a more porous structure that improved the short-circuit current density in DSSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Azeez UH, Gunasekaran A, Sorrentino A, Syed A, Marraiki N, Anandan S (2021) Synthesis and characterization of poly-3-(9H-carbazol-9-yl) propylmethacrylate as a gel electrolyte for dye-sensitized solar cell applications. Polym Bull 18:1–4

    Google Scholar 

  2. O’regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737

    Article  Google Scholar 

  3. Mahalingam S, Manap A, Omar A, Low FW, Afandi NF, Chia CH, Rahim NA (2021) Functionalized graphene quantum dots for dye-sensitized solar cell: Key challenges, recent developments and future prospects. Renew Sust Energ Rev 144:110999

    Article  CAS  Google Scholar 

  4. Znaidi L, Touam T, Vrel D, Soudeda N, Yahiaa S Ben, Brinzaa O, Fischerb A et al (2012) ZnO thin films synthesized by sol–gel process for photonic applications. Acta Physica Pol A, 121(1):165–168. Retrieved from http://przyrbwn.icm.edu.pl/APP/PDF/121/a121z1p50.pdf

  5. Reda SM (2010) Synthesis of ZnO and Fe2O3 nanoparticles by solgel method and their application in dye-sensitized solar cells. Mater Sci Semicond Process 13(5–6):417–425. https://doi.org/10.1016/j.mssp.2011.09.007

    Article  CAS  Google Scholar 

  6. Xie Y, Ju Y, Toku Y, Morita Y (2017) Fabrication of Fe2O3 nanowire arrays based on oxidation-assisted stress-induced atomic-diffusion and their photovoltaic properties for solar water. RSC Adv 7(49):30548–30553

    Article  CAS  Google Scholar 

  7. Sharma B, Malik P, Jain P (2019) To study the effect of processing conditions on structural and mechanical characterization of graphite and graphene oxide-reinforced PVA nanocomposite. Polym Bull 76(8):3841–3855

    Article  Google Scholar 

  8. Ghahramani A, Gheibi M, Eftekhari M (2019) Polyaniline-coated reduced graphene oxide as an efficient adsorbent for the removal of malachite green from water samples. Polym Bull 76(10):5269–5283

    Article  CAS  Google Scholar 

  9. Wei L, Wang P, Yang Y, Luo R, Li J, Gu X, Zhan Z et al (2018) Facile synthesis of nitrogen-doped reduced graphene oxide as an efficient counter electrode for dye-sensitized solar cells. J Nanoparticle Res. https://doi.org/10.1007/s11051-018-4203-9

    Article  Google Scholar 

  10. Yang CH, HoWY YHH, Hsueh ML (2010) Approaches to gel electrolytes in dye-sensitized solar cells using pyridinium molten salts. J Mater Chem 20(29):6080–6085

    Article  CAS  Google Scholar 

  11. Pulli E, Rozzi E, Bella F (2020) Transparent photovoltaic technologies: current trends towards upscaling. Energy Convers Manag 219:112982

    Article  Google Scholar 

  12. Scalia A, Bella F, Lamberti A, Gerbaldi C, Tresso E (2019) Innovative multipolymer electrolyte membrane designed by oxygen inhibited UV-crosslinking enables solid-state in plane integration of energy conversion and storage devices. Energy 1(166):789–795

    Article  Google Scholar 

  13. Nishshanke GB, Thilakarathna BD, Albinsson I, Mellander BE, Bandara TM (2021) Multi-layers of TiO2 nanoparticles in the photoelectrode and binary iodides in the gel polymer electrolyte based on poly (ethylene oxide) to improve quasi solid-state dye-sensitized solar cells. J Solid State Electrochem 25(2):707–720

    Article  CAS  Google Scholar 

  14. Saidi NM, Farhana NK, Ramesh S, Ramesh K (2021) Influence of different concentrations of 4-tert-butyl-pyridine in a gel polymer electrolyte towards improved performance of dye-sensitized solar cells (DSSC). Sol Energy 1(216):111–119

    Article  Google Scholar 

  15. Imperiyka M, Ahmad A, Hanifah SA, Bella F (2014) A UV-prepared linear polymer electrolyte membrane for dye-sensitized solar cells. Physica B 1(450):151–154

    Article  Google Scholar 

  16. Tsuge Y, Inokuchi K, Onozuka K, Shingo O, Sugi S, Yoshikawa M, Shiratori S (2006) Fabrication of porous TiO2 films using a spongy replica prepared by layer-by-layer self-assembly method: application to dye-sensitized solar cells. Thin Solid Films 499(1–2):396–401

    Article  CAS  Google Scholar 

  17. Hu B, Tang Q, He B, Lin L, Chen H (2014) Mesoporous TiO2 anodes for efficient dye-sensitized solar cells: an efficiency of 9.86% under one sun illumination. J Power Sources 267:445–51

    Article  CAS  Google Scholar 

  18. Munkhbayar B, Hwang S, Kim J, Bae K, Ji M, Chung H, Jeong H (2012) Photovoltaic performance of dye-sensitized solar cells with various MWCNT counter electrode structures produced by different coating methods. Electrochim Acta 1(80):100–107

    Article  Google Scholar 

  19. Li D, Zhou J, Chen X, Song H (2016) Amorphous Fe2O3/graphene composite nanosheets with enhanced electrochemical performance for sodium-ion battery. ACS Appl Mater Interfaces 8(45):30899–30907. https://doi.org/10.1021/acsami.6b09444

    Article  CAS  PubMed  Google Scholar 

  20. Huang Y, Li D, Feng J, Li G, Zhang Q (2010) Transparent conductive tungsten-doped tin oxide thin films synthesized by sol–gel technique on quartz glass substrates. J Sol Gel Sci Technol 54:276

    Article  CAS  Google Scholar 

  21. Jamal EMA, Kumar DS, Anantharaman MR (2011) On structural, optical and dielectric properties of zinc aluminate nanoparticles. Bull Mater Sci 34:251

    Article  Google Scholar 

  22. Mututu V, Sunitha AK, Thomas R, Pandey M, Manoj B (2019) An investigation on structural, electrical and optical properties of GO/ZnO nanocomposite. Int J Electrochem Sci 1(14):3752–3763

    Article  Google Scholar 

  23. Abomostafa GM, El komy, SA Gad, MM Selim, (2018) Tuning the optical properties of Fe2O3 doped ZnO/Polystyrene composite films. IOSR J Appl Phys 10(5):47–56

    Google Scholar 

  24. Evarestov RA (2013) Quantum chemistry of solids: LCAO treatment of crystals and nanostructures, 2nd edn. Springer, Heidelberg, pp 77–80

    Google Scholar 

  25. Mebrahtu C, Taddesse AM, Goro G, Yohannes T (2017) Natural pigment sensitized solar cells based on ZnO–TiO2–Fe2O3 nanocomposite in quasi-solid state electrolyte system. Bull Chem Soc Ethiop 31(2):263–279

    Article  CAS  Google Scholar 

  26. Wen P, Han Y, Zhao W (2012) Influence of TiO2 nanocrystals fabricating dyesensitized solar cell on the absorping spectra of N719 sensitizer. Int J Photoenergy 2012:1–7

    Google Scholar 

  27. Mahalingam S, Abdullah H (2016) Electron transport study of indium oxide as photoanode in DSSCs: a review. Renew Sustain Energy Rev 1(63):245–255

    Article  Google Scholar 

  28. Mahalingam S, Abdullah H, Manap A (2018) Role of acid-treated CNTs in chemical and electrochemical impedance study of dye-sensitised solar cell. Electrochim Acta 20(264):275–283

    Article  Google Scholar 

  29. Abdullah H, Zainudin MK, Ahmad M, Mahalingam S, Manap A (2019) (SiO2)100-x-Nix (x= 2.5, 10.0) Composite-based photoanode with polymer gel electrolyte for increased dye-sensitized solar cell performance. Ionics. 25(7):3387–3396

    Article  CAS  Google Scholar 

  30. Hara K, Zhao ZG, Cui Y, Miyauchi M, Miyashita M, Mori S (2011) Nanocrystalline electrodes based on nanoporous-walled WO3 nanotubes for organic-dye-sensitized solar cells. Langmuir 27(20):12730–12736

    Article  CAS  Google Scholar 

  31. Shikoh AS, Ahmad Z, Touati F, Shakoor RA, Al-Muhtaseb SA (2017) Optimization of ITO glass/TiO2 based DSSC photo-anodes through electrophoretic deposition and sintering techniques. Ceram Int 43(13):10540–10545

    Article  CAS  Google Scholar 

  32. Hoshikawa T, Yamada M, Kikuchi R, Eguchi K (2015) Impedance analysis of internal resistance affecting the photoelectrochemical performance of dyesensitized solar cells. J Electrochem Soc 152:E68

    Article  Google Scholar 

  33. Abdullah H, Atiqah NA, Omar A, Asshaari I, Mahalingam S, Razali Z, Shaari S, Mandeep JS, Misran H (2015) Structural, morphological, electrical and electron transport studies in ZnO–rGO (wt% = 0.01, 0.05 and 0.1) based dye-sensitized solar cell. J Mater Sci Mater Electron 26(4):2263–2270

    Article  CAS  Google Scholar 

  34. Bisquert J (2002) Theory of the impedance of electron diffusion and recombination in a thin layer. J Phys Chem B 106:325

    Article  CAS  Google Scholar 

  35. Bisquert J, Zaban A, Greenshtein M, Seró IM (2004) Determination of rate constants for charge transfer and distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method. J Am Chem Soc 126:1355

    Article  Google Scholar 

  36. Guliani R, Jain A, Kapoor A (2012) Exact analytical analysis of dye-sensitized solar cell: improved method and comparative study. Open Renew Energy J 5(1):49–60

    Article  CAS  Google Scholar 

  37. Eom TS, Kim KH, Bark CW, Choi HW (2014) Influence of Fe2O3 doping on TiO2 electrode for enhancement photovoltaic efficiency of dye-sensitized solar cells. Mol Cryst Liq Cryst 600(1):39–46

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was fully supported by Universiti Kebangsaan Malaysia (Project No. FRGS/1/2019/STG07/UKM/02/11 and GUP-2018-097) and Photonic Technology Laboratory, Department of Electrical, Electronics and Systems Engineering, UKM for the facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huda Abdullah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, H., Mahalingam, S., Abu Bakar, N.A. et al. Influence of Fe2O3 in ZnO/GO-based dye-sensitized solar cell. Polym. Bull. 79, 4287–4301 (2022). https://doi.org/10.1007/s00289-021-03708-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03708-8

Keywords

Navigation