Skip to main content
Log in

The effects of carbon nanoparticles on curing kinetics of epoxy modified with triblock copolymer

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This work studies the effects of combining triblock copolymers with carbon nanoparticles (carbon nanotubes, graphene and carbon black) on curing kinetics. The chosen triblock copolymer was poly (propylene glycol)-block-poly (ethylene glycol)-block-poly (propylene glycol) (PPG-b-PEG-b-PPG), which has different contents of PEG in its structure. The main objective is to investigate the influence of the miscibility of the PPG-b-PEG-b-PPG copolymer in epoxy nanocomposites. The PEG fraction in the copolymer structure was determinant for miscibility. The copolymer with the highest PEG fraction (50%) in its structure showed miscibility. The copolymer miscibility was critical for nanoparticle–matrix synergy, and the PPG-b-PEG-b-PPG copolymer nanocomposite with 50 wt% PEG showed a greater increase in E’ in relation to the nanocomposite with PPG-b-PEG-b-PPG with 10% by weight of PEG. Cure kinetics results showed that the incorporation of carbon nanoparticles delays the kinetics as the temperature increases. Additionally, the miscible block copolymer delayed the curing reaction, whereas the immiscible one accelerated it, even with the addition of nanoparticles. Finally, DSC analysis allowed to verify that the cure kinetics of all studied copolymer nanocomposite systems satisfy Kamal’s autocatalytic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

  1. Bajpai A, Wetzel B, Klingler A, Friedrich K (2020) Mechanical properties and fracture behavior of high-performance epoxy nanocomposites modified with block polymer and core–shell rubber particles. J Appl Polym Sci 137:48471. https://doi.org/10.1002/app.48471

    Article  CAS  Google Scholar 

  2. Gómez-del Río T, Salazar A, Pearson RA, Rodríguez J (2016) Fracture behaviour of epoxy nanocomposites modified with triblock copolymers and carbon nanotubes. Compos Part B Eng 87:343–349. https://doi.org/10.1016/j.compositesb.2015.08.085

    Article  CAS  Google Scholar 

  3. Schuster MB, Opelt CV, Becker D, Coelho LAF (2018) Role and sinergy of block copolymer and carbon nanoparticles on toughness in epoxy matrix. Polym Compos 39:E2262–E2273. https://doi.org/10.1002/pc.24599

    Article  CAS  Google Scholar 

  4. Larrañaga M, Martín MD, Gabilondo N et al (2004) Cure kinetics of epoxy systems modified with block copolymers. Polym Int 53:1495–1502. https://doi.org/10.1002/pi.1574

    Article  CAS  Google Scholar 

  5. Silva BL, Bello RH, Coelho LAF (2018) The role of the ratio (PEG:PPG) of a triblock copolymer (PPG-b-PEG-b-PPG) in the cure kinetics, miscibility and thermal and mechanical properties in an epoxy matrix. Polym Int 67:1248–1255. https://doi.org/10.1002/pi.5633

    Article  CAS  Google Scholar 

  6. Martin-Gallego M, Verdejo R, Gestos A et al (2015) Morphology and mechanical properties of nanostructured thermoset/block copolymer blends with carbon nanoparticles. Compos Part Appl Sci Manuf 71:136–143. https://doi.org/10.1016/j.compositesa.2015.01.010

    Article  CAS  Google Scholar 

  7. Martin-Gallego M, Yuste-Sanchez V, Sanchez-Hidalgo R et al (2018) Epoxy nanocomposites filled with carbon nanoparticles. Chem Rec N Y N 18:928–939. https://doi.org/10.1002/tcr.201700095

    Article  CAS  Google Scholar 

  8. Pascault J-P, Williams RJJ (2010) General concepts about epoxy polymers. In: Epoxy polymers: new materials and innovations, 1 edition. Wiley-VCH, Weinheim

  9. Peponi L, Puglia D, Torre L et al (2014) Processing of nanostructured polymers and advanced polymeric based nanocomposites. Mater Sci Eng, R 85:1–46. https://doi.org/10.1016/j.mser.2014.08.002

    Article  Google Scholar 

  10. Wetzel B, Rosso P, Haupert F, Friedrich K (2006) Epoxy nanocomposites: fracture and toughening mechanisms. Eng Fract Mech 73:2375–2398. https://doi.org/10.1016/j.engfracmech.2006.05.018

    Article  Google Scholar 

  11. Fan W, Zheng S (2008) Reaction-induced microphase separation in thermosetting blends of epoxy resin with poly(methyl methacrylate)-block-polystyrene block copolymers: effect of topologies of block copolymers on morphological structures. Polymer 49:3157–3167. https://doi.org/10.1016/j.polymer.2008.05.010

    Article  CAS  Google Scholar 

  12. Gong W, Zeng K, Wang L, Zheng S (2008) Poly(hydroxyether of bisphenol A)-block-polydimethylsiloxane alternating block copolymer and its nanostructured blends with epoxy resin. Polymer 49:3318–3326. https://doi.org/10.1016/j.polymer.2008.05.032

    Article  CAS  Google Scholar 

  13. Taguet A, Cassagnau P, Lopez-Cuesta J-M (2014) Structuration, selective dispersion and compatibilizing effect of (nano)fillers in polymer blends. Prog Polym Sci 39:1526–1563. https://doi.org/10.1016/j.progpolymsci.2014.04.002

    Article  CAS  Google Scholar 

  14. Silva BL, Schuster MB, Bello RH et al (2020) The role of carbon nanoparticles in epoxy-based nanocomposites modified with (PPG-b-PEG-b-PPG) triblock copolymers on phase morphologies and mechanical properties. Polym Compos. https://doi.org/10.1002/pi.5633(in press)

    Article  Google Scholar 

  15. Idicula M, Malhotra SK, Joseph K, Thomas S (2005) Dynamic mechanical analysis of randomly oriented intimately mixed short banana/sisal hybrid fibre reinforced polyester composites. Compos Sci Technol 65:1077–1087. https://doi.org/10.1016/j.compscitech.2004.10.023

    Article  CAS  Google Scholar 

  16. Ornaghi HL, Bolner AS, Fiorio R et al (2010) Mechanical and dynamic mechanical analysis of hybrid composites molded by resin transfer molding. J Appl Polym Sci 118:887–896. https://doi.org/10.1002/app.32388

    Article  CAS  Google Scholar 

  17. Lorandi NP, Cioffi MOH, Ornaghi HO Jr (2016) Análise Dinâmico-Mecânica de Materiais Compósitos Poliméricos. Sci Ind 4:48–60. https://doi.org/10.18226/23185279.v4iss1p48

    Article  Google Scholar 

  18. Jyoti J, Singh BP, Arya AK, Dhakate SR (2016) Dynamic mechanical properties of multiwall carbon nanotube reinforced ABS composites and their correlation with entanglement density, adhesion, reinforcement and C factor. RSC Adv 6:3997–4006. https://doi.org/10.1039/C5RA25561A

    Article  CAS  Google Scholar 

  19. Hameed N, Sreekumar PA, Francis B et al (2007) Morphology, dynamic mechanical and thermal studies on poly(styrene-co-acrylonitrile) modified epoxy resin/glass fibre composites. Compos Part Appl Sci Manuf 38:2422–2432. https://doi.org/10.1016/j.compositesa.2007.08.009

    Article  CAS  Google Scholar 

  20. Raetzke S, Kindersberger J (2010) Role of interphase on the resistance to high-voltage arcing, on tracking and erosion of silicone/SiO2 nanocomposites. IEEE Trans Dielectr Electr Insul 17:607–614. https://doi.org/10.1109/TDEI.2010.5448118

    Article  CAS  Google Scholar 

  21. Li T, Heinzer MJ, Redline EM et al (2014) Microstructure and performance of block copolymer modified epoxy coatings. Prog Org Coat 77:1145–1154. https://doi.org/10.1016/j.porgcoat.2014.03.015

    Article  CAS  Google Scholar 

  22. Abdalla M, Dean D, Robinson P, Nyairo E (2008) Cure behavior of epoxy/MWCNT nanocomposites: the effect of nanotube surface modification. Polymer 49:3310–3317. https://doi.org/10.1016/j.polymer.2008.05.016

    Article  CAS  Google Scholar 

  23. Larrañaga M, Serrano E, Martin MD et al (2007) Mechanical properties–morphology relationships in nano-/microstructured epoxy matrices modified with PEO–PPO–PEO block copolymers. Polym Int 56:1392–1403. https://doi.org/10.1002/pi.2289

    Article  CAS  Google Scholar 

  24. Xie X-L, Mai Y-W, Zhou X-P (2005) Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng R Rep 49:89–112. https://doi.org/10.1016/j.mser.2005.04.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partially financed by the Coordenação de Aperfeicoamento de Pessoal de Nivel Superior - Brasil (CAPES) - Finance Code 001. The authors would like to thank for the financial resources provided by CNPq and FAPESC/PAP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruna Louise Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, B.L., Schuster, M.B., Bello, R.H. et al. The effects of carbon nanoparticles on curing kinetics of epoxy modified with triblock copolymer. Polym. Bull. 79, 21–36 (2022). https://doi.org/10.1007/s00289-020-03458-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03458-z

Keywords

Navigation