Skip to main content
Log in

A semi-empirical model for thermal conductivity of polymer nanocomposites containing carbon nanotubes

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A new version of the semi-empirical Halpin–Tsai (H–T) model is presented to evaluate the effective thermal conductivity of general carbon nanotubes (CNTs)-reinforced polymer nanocomposites. The model captures the influences of the CNTs alignment, random orientation, aggregation, waviness, length, diameter and the CNT/polymer interfacial thermal resistance parameters. In order to verify the suitability of the new H–T model, the numerically calculated thermal conductivities are compared with existing experimentally measured ones. An excellent predictability is found of the modified H–T model over a wide range of the tests. The consideration of the CNT waviness and the interfacial thermal resistance parameters is seriously essential for a more realistic prediction in all conditions. For aligned CNT-reinforced polymer nanocomposites, considering the alignment factor seems to be very important. Moreover, in the case of well-dispersed CNTs into the matrix, it is necessary to incorporate the CNT random orientation parameter. Additionally, when CNTs are not well dispersed, the CNT aggregation and random orientation parameters must be incorporated in the analysis. The effects of the CNT volume fraction, length, diameter and non-straight shape on the nanocomposite thermal conducting behavior are estimated in details. The results clearly expose that it is needed to eliminate the aggregation, use the straight CNTs and form a strong interface if the full potential of CNT reinforcement is to be realized. Finally, the thermal conductivities of CNT-shape-memory polymer nanocomposites at different temperatures are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Doudou BB, Vivet A, Chen J, Laachachi A, Falher T, Poilâne C (2014) Hybrid carbon nanotube—silica/polyvinyl alcohol nanocomposites films: preparation and characterisation. J Polym Res 21(4):420

    Article  Google Scholar 

  2. Hassanzadeh-Aghdam MK, Ansari R, Darvizeh A (2017) Micromechanical modeling of thermal expansion coefficients for unidirectional glass fiber-reinforced polyimide composites containing silica nanoparticles. Compos Part A 96:110–121

    Article  CAS  Google Scholar 

  3. Chaudhary B, Panwar V, Roy T, Pal K (2019) Thermomechanical behaviour of zirconia-multiwalled carbon nanotube-reinforced polypropylene hybrid composites. Polym Bull 76(1):511–521

    Article  CAS  Google Scholar 

  4. Bui K, Papavassiliou DV (2013) Numerical calculation of the effective thermal conductivity of nanocomposites. Numer Heat Transf Part A: Appl 63(8):590–603

    Article  CAS  Google Scholar 

  5. Kochetov R, Korobko AV, Andritsch T, Morshuis PHF, Picken SJ, Smit JJ (2011) Modelling of the thermal conductivity in polymer nanocomposites and the impact of the interface between filler and matrix. J Phys D Appl Phys 44(39):395401

    Article  Google Scholar 

  6. Omidi M, Milani AS, Seethaler RJ, Arasteh R (2010) Prediction of the mechanical characteristics of multi-walled carbon nanotube/epoxy composites using a new form of the rule of mixtures. Carbon 48(11):3218–3228

    Article  CAS  Google Scholar 

  7. Philip B, Xie J, Abraham JK, Varadan VK (2005) Polyaniline/carbon nanotube composites: starting with phenylamino functionalized carbon nanotubes. Polym Bull 53(2):127–138

    Article  CAS  Google Scholar 

  8. Bakshi SR, Patel RR, Agarwal A (2010) Thermal conductivity of carbon nanotube reinforced aluminum composites: a multi-scale study using object oriented finite element method. Comput Mater Sci 50(2):419–428

    Article  CAS  Google Scholar 

  9. Bryning MB, Milkie DE, Islam MF, Kikkawa JM, Yodh AG (2005) Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites. Appl Phys Lett 87(16):161909

    Article  Google Scholar 

  10. Xu Y, Ray G, Abdel-Magid B (2006) Thermal behavior of single-walled carbon nanotube polymer–matrix composites. Compos Part A 37(1):114–121

    Article  CAS  Google Scholar 

  11. Bonnet P, Sireude D, Garnier B, Chauvet O (2007) Thermal properties and percolation in carbon nanotube-polymer composites. Appl Phys Lett 91(20):201910

    Article  Google Scholar 

  12. Kim YA, Kamio S, Tajiri T, Hayashi T, Song SM, Endo M, Dresselhaus MS (2007) Enhanced thermal conductivity of carbon fiber/phenolic resin composites by the introduction of carbon nanotubes. Appl Phys Lett 90(9):093125

    Article  Google Scholar 

  13. Haggenmueller R, Guthy C, Lukes JR, Fischer JE, Winey KI (2007) Single wall carbon nanotube/polyethylene nanocomposites: thermal and electrical conductivity. Macromolecules 40(7):2417–2421

    Article  CAS  Google Scholar 

  14. Guthy C, Du F, Brand S, Winey KI, Fischer JE (2007) Thermal conductivity of single-walled carbon nanotube/PMMA nanocomposites. J Heat Transf 129(8):1096–1099

    Article  CAS  Google Scholar 

  15. Marconnet AM, Yamamoto N, Panzer MA, Wardle BL, Goodson KE (2011) Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density. ACS Nano 5(6):4818–4825

    Article  CAS  Google Scholar 

  16. Ji T, Feng Y, Qin M, Feng W (2016) Thermal conducting properties of aligned carbon nanotubes and their polymer composites. Compos Part A 91:351–369

    Article  CAS  Google Scholar 

  17. Bouchard J, Cayla A, Devaux E, Campagne C (2013) Electrical and thermal conductivities of multiwalled carbon nanotubes-reinforced high performance polymer nanocomposites. Compos Sci Technol 86:177–184

    Article  CAS  Google Scholar 

  18. Kwon SY, Kwon IM, Kim YG, Lee S, Seo YS (2013) A large increase in the thermal conductivity of carbon nanotube/polymer composites produced by percolation phenomena. Carbon 55:285–290

    Article  CAS  Google Scholar 

  19. Kim HS, Jang JU, Yu J, Kim SY (2015) Thermal conductivity of polymer composites based on the length of multi-walled carbon nanotubes. Compos Part B 79:505–512

    Article  CAS  Google Scholar 

  20. Yu K, Liu Y, Liu Y, Peng HX, Leng J (2014) Mechanical and shape recovery properties of shape memory polymer composite embedded with cup-stacked carbon nanotubes. J Intell Mater Syst Struct 25(10):1264–1275

    Article  CAS  Google Scholar 

  21. Behl M, Lendlein A (2007) Shape-memory polymers. Mater Today 10(4):20–28

    Article  CAS  Google Scholar 

  22. Dastgerdi JN, Marquis G, Salimi M (2013) The effect of nanotubes waviness on mechanical properties of CNT/SMP composites. Compos Sci Technol 86:164–169

    Article  Google Scholar 

  23. Yang QS, He XQ, Liu X, Leng FF, Mai YW (2012) The effective properties and local aggregation effect of CNT/SMP composites. Compos Part B 43(1):33–38

    Article  Google Scholar 

  24. Kundalwal SI, Ray MC (2014) Estimation of thermal conductivities of a novel fuzzy fiber reinforced composite. Int J Therm Sci 76:90–100

    Article  CAS  Google Scholar 

  25. Hassanzadeh-Aghdam MK, Ansari R, Darvizeh A (2017) A new micromechanics approach for predicting the elastic response of polymer nanocomposites reinforced with randomly oriented and distributed wavy carbon nanotubes. J Compos Mater 51(20):2899–2912

    Article  CAS  Google Scholar 

  26. Jia Y, Peng K, Gong XL, Zhang Z (2011) Creep and recovery of polypropylene/carbon nanotube composites. Int J Plast 27(8):1239–1251

    Article  CAS  Google Scholar 

  27. Kumlutas D, Tavman IH (2006) A numerical and experimental study on thermal conductivity of particle filled polymer composites. J Therm Compos Mater 19(4):441–455

    Article  CAS  Google Scholar 

  28. Nan CW, Liu G, Lin Y, Li M (2004) Interface effect on thermal conductivity of carbon nanotube composites. Appl Phys Lett 85(16):3549–3551

    Article  CAS  Google Scholar 

  29. Ginga NJ, Chen W, Sitaraman SK (2014) Waviness reduces effective modulus of carbon nanotube forests by several orders of magnitude. Carbon 66:57–66

    Article  CAS  Google Scholar 

  30. Yeh MK, Tai NH, Liu JH (2006) Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes. Carbon 44(1):1–9

    Article  CAS  Google Scholar 

  31. Aliev AE, Lima MH, Silverman EM, Baughman RH (2009) Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes. Nanotechnology 21(3):035709

    Article  Google Scholar 

  32. Weidenfeller B, Anhalt M (2014) Polyurethane-magnetite composite shape-memory polymer: thermal properties. J Therm Compos Mater 27(7):895–908

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Safi or M. J. Mahmoodi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safi, M., Hassanzadeh-Aghdam, M.K. & Mahmoodi, M.J. A semi-empirical model for thermal conductivity of polymer nanocomposites containing carbon nanotubes. Polym. Bull. 77, 6577–6590 (2020). https://doi.org/10.1007/s00289-019-03082-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-03082-6

Keywords

Navigation