Skip to main content
Log in

A new synthesis of limonene copolymer: experimental and theoretical analysis

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A copolymer of limonene with 2-(4-methoxyphenylamino)-2-oxoethyl methacrylate (LIM-co-MPAEMA) which is thought to be a non-toxic and used generally as a dietary supplement was synthesized and characterized for the first time both experimentally and theoretically. The structure of synthesized limonene copolymer was chemically characterized by Fourier transform infrared and nuclear magnetic resonant (1H NMR) spectroscopic techniques and compared with the theoretical calculated results. Charge transfer that is important in the formation of chemically bonded adducts causing cancer is quantitatively calculated. It was found that this polymer can be used as a biomaterial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Odian G (2004) Principles of polymerization. Wiley, Hoboken

    Book  Google Scholar 

  2. Kerton FM, Marriott R (2013) Alternative solvents for green chemistry. In: Clark JH, Kraus G, Stankiewicz A (eds) Renewable solvents, vol 20. Royal Society of Chemistry, Cambridge, p 97

    Google Scholar 

  3. Kim YW, Kim MJ, Chung BY, Bang DY, Lim SK, Choi SM, Lim DS, Cho MC, Yoon K, Kim HS, Kim KB, Kim YS, Kwack SJ, Lee B (2013) Safety evaluation and risk assessment of D-limonene. J Toxicol Environ Health B 16:17

    Article  CAS  Google Scholar 

  4. Filipsson AF, Bard J, Karlsson S (1998) Concise international chemical assessment document 5: limonene. World Health Organization, Geneva, p 1

    Google Scholar 

  5. Bauer K, Garbe D (2006) Surburg H. In: Bauer K (ed) Common fragrance and flavor materials: preparation, properties and uses. Wiley, Weinheim, p 330

    Google Scholar 

  6. Breitmaier E (2006) Terpenes: importance, general structure, and biosynthesis. Wiley, Weinheim, p 1

    Book  Google Scholar 

  7. Gu Y, Jerome F (2013) Bio-based solvents: an emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry. Chem Soc Rev 42:9550

    Article  CAS  Google Scholar 

  8. Mohammad A (ed) (2012) Green solvents. I, properties and application in chemistry. Springer, New York (eds: Inamuddin)

    Google Scholar 

  9. Modena M, Bates RB, Marvel CS (1965) Some low molecular weight polymers of D-limonene and related terpenes obtained by Ziegler-type catalyst. J Polym Sci A 3:949–960

    CAS  Google Scholar 

  10. Roberts WJ, Day AR (1950) Study of the polymerization of a-pinene and b-pinene with Friedal–Craft catalyst. J Am Chem Soc 72:1226–1230

    Article  CAS  Google Scholar 

  11. Doiuchi T, Yamaguchi H, Minoura Y (1981) Cyclocopolymerization of d-limonene with maleic anhydride. Eur Polym J 17(9):961

    Article  CAS  Google Scholar 

  12. Sharma S, Srivastava A (2004) Synthesis and characterization of copolymers of limonene with styrene initiated by azobisisobutyronitrile. Eur Polym J 9:2235–2240

    Article  CAS  Google Scholar 

  13. Sharma S, Srivastava A (2003) Radical copolymerization of limonene with acrylonitrile: kinetics and mechanism. Polym Plast Technol Eng 3:485–502

    Article  CAS  Google Scholar 

  14. Sharma S, Srivastava A (2003) Alternating copolymers of limonene with methyl methacrylate: kinetics and mechanism. J Appl Polym Sci 6:593–603

    Google Scholar 

  15. Zhang Y, Dube AM (2015) Copolymerization of 2-ethylhexyl acrylate and dlimonene, copolymerization of 2-ethylhexyl acrylate and D-limonene. Polym Plast Technol Eng 54(5):499–505

    Article  CAS  Google Scholar 

  16. Kindermann N, Cristofol A, Kleij AW (2017) Access to biorenewable polycarbonates with unusual glass-transition temperature (T g) modulation. ACS Catal 7(6):3860–3863

    Article  CAS  Google Scholar 

  17. Nendza M, Volmer J, Klein W, Kalcher N, Devillers J (eds) (1990) Risk assessment based on QSAR estimates. Kluwer Academic Publishers, Dordrecht, pp 213–240

    Google Scholar 

  18. Schultz TW (1997) Tetrahymena pyriformis population growth impairment endpointa surrogate for fish lethality. Toxicol Methods 7:289–309

    Article  CAS  Google Scholar 

  19. Dimitrov SD, Mekenyan OG, Schultz TW (2000) Interspecies modeling of narcotics toxicity to aquatic animals. Bull Environ Contam Toxicol 65:399–406

    Article  CAS  PubMed  Google Scholar 

  20. Chattaraj PK, Nath S, Maiti B (2003) Reactivity descriptors. In: Tollenaere J, Bultinck P, Winter HD, Langenaeker W (eds) Computational medicinal chemistry for drug discovery, chap 11. Marcel Dekker, New York, pp 295–322

    Google Scholar 

  21. Parthasarathi R, Padmanabhan J, Subramanian V, Maiti B, Chattaraj PK (2003) Molecular structure, reactivity, and toxicity of the complete series of chlorinated benzenes. J Phys Chem A 107:13046

    Article  CAS  Google Scholar 

  22. Parthasarathi R, Padmanabhan J, Subramanian V, Maiti B, Chattaraj PK (2004) Toxicity analysis of 33′44′5-pentachloro biphenyl through chemical reactivity and selectivity profiles. Curr Sci 86:535–542

    CAS  Google Scholar 

  23. Padmanabhan J, Parthasarathi R, Sarkar U, Subramanian V, Chattaraj PK (2004) Effect of solvation on the condensed Fukui function and the generalized philicity index. Chem Phys Lett 383(1–2):122–128

    Article  CAS  Google Scholar 

  24. Roy RK, De Proft F, Geerlings P (1998) Site of protonation in aniline and substituted anilines in the gas phase: a study via the local hard and soft acids and bases concept. J Phys Chem A 102:7035

    Article  CAS  Google Scholar 

  25. Mendez F, Tamariz J, Geerlings P (1998) 1, 3-dipolar cycloaddition reactions: a DFT and HSAB principle theoretical model. J Phys Chem A 102:6292

    Article  CAS  Google Scholar 

  26. Langenaeker W, De Proft F, Geerlings P (1998) Ab initio and density functional theory study of the geometry and reactivity of benzyne, 3-fluorobenzyne, 4-fluorobenzyne, and 4, 5-didehydropyrimidine. J Phys Chem A 102:5944

    Article  CAS  Google Scholar 

  27. Roy RK, Krishnamurthy S, Geerlings P, Pal S (1998) Local softness and hardness based reactivity descriptors for predicting intra-and intermolecular reactivity sequences: carbonyl compounds. J Phys Chem A 102:3746

    Article  CAS  Google Scholar 

  28. Chatterjee A, Iwasakı T, Ebina T (1999) Reactivity index scale for interaction of heteroatomic molecules with zeolite framework. J Phys Chem A 103:2489

    Article  CAS  Google Scholar 

  29. Perez P, Toro-Labbe A, Contreras R (1999) HSAB analysis of charge transfer in the gas-phase acid–base equilibria of alkyl-substituted alcohols. J Phys Chem A 103:11246

    Article  CAS  Google Scholar 

  30. Jaque P, Toro-Labbe A (2000) Theoretical study of the double proton transfer in the CHX–XH⊙⊙⊙ CHX–XH (X = O, S) complexes. J Phys Chem A 104:995

    Article  CAS  Google Scholar 

  31. Perez P, Toro-Labbe A, Contreras R (2000) Global and local analysis of the gas-phase acidity of haloacetic acids. J Phys Chem A 104:5882

    Article  CAS  Google Scholar 

  32. Gutıerrez-Oliva S, Jaque P, Toro-Labbe A (2000) Using Sanderson’s principle to estimate global electronic properties and bond energies of hydrogen-bonded complexes. J Phys Chem A 104:8955

    Article  CAS  Google Scholar 

  33. Parthasarathi R, Padmanabhan J, Sarkar U, Maiti B, Subramanian V, Chattaraj PK (2003) Toxicity analysis of benzidine through chemical reactivity and selectivity profiles: a DFT approach. Internet Electron J Mol Des 2:798–813

    CAS  Google Scholar 

  34. Roy DR, Parthasarathi R, Maiti B, Subramanian V, Chattaraj PK (2005) Electrophilicity as a possible descriptor for toxicity prediction. Bioorg Med Chem 13:3405–3412

    Article  CAS  PubMed  Google Scholar 

  35. Kloosterboer JG (1988) Network formation by chain crosslinking photopolymerization and its applications in electronics. Adv Polym Sci 84:1

    Article  CAS  Google Scholar 

  36. Matyjaszewski K, Gnanou Y, Leibler L (2007) Macromolecular engineering: precise synthesis, materials properties, applications. Wiley, Weinheim

    Book  Google Scholar 

  37. Ljubic TS, Pahovnik D, Žigon M, Žagar E (2012) Photochemically active systems and probes for polymer research. Sci World J 2012:1

    Article  CAS  Google Scholar 

  38. Acikbas Y, Cankaya N, Capan R, Erdogan M, Soykan C (2016) Swelling behaviour of the 2-(4-methoxyphenylamino)-2-oxoethyl methacrylate monomer LB thin film exposed to various organic vapours by quartz crystal microbalance technique. J Macromol Sci A Pure Appl Chem 53(1):18–25

    Article  CAS  Google Scholar 

  39. Gülbaş HE, Çankaya N (2017) D-Limonen İle 2-(4-Metoksifenilamino)-2-Oksoetil Metakrilat (MPAEMA) Kopolimerinin (Limonen-co-MPAEMA) Sentezi ve Karakterizasyonu. In: 2nd international congress on engineering architecture and design, oral presentation, Kocaeli-Turkey, pp 749–750

  40. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  41. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  42. Vosko SH, Vilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  43. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  44. Frisch MJ et al (2009) Gaussian 09, revision A.1. Gaussian, Inc., Wallingford

    Google Scholar 

  45. http://cccbdb.nist.gov/vsfx.asp

  46. Jamroz MH (2013) Vibrational energy distribution analysis (VEDA): scopes and limitations. Spectrochim Acta A Mol Biomol Spectrosc 114:220–230

    Article  CAS  PubMed  Google Scholar 

  47. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  48. Ditchfield R (1972) Molecular orbital theory of magnetic shielding and magnetic susceptibility. J Chem Phys 56:5688–5691

    Article  CAS  Google Scholar 

  49. Wolinski K, Hinton JF, Pulay P (1990) Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 112:8251–8260

    Article  CAS  Google Scholar 

  50. O’Boyle NM, Tenderholt AL, Langner KM (2008) Cclib: a library for package‐independent computational chemistry algorithms. J Comput Chem 29:839–845

    Article  CAS  PubMed  Google Scholar 

  51. Abraham CS, Prasana JC, Muthu S (2017) Quantum mechanical, spectroscopic and docking studies of 2-amino-3-bromo-5-nitropyridine by density functional method. Spectrochim Acta A 181:153–163

    Article  CAS  Google Scholar 

  52. Socrates G (2001) Infrared and Raman characteristics group frequencies, tables and charts, 3rd edn. Wiley, Chichester

    Google Scholar 

  53. Sundaraganesan N, Illakiamani S, Meganathan C, Joshua BD (2007) Vibrational spectroscopy investigation using ab initio and density functional theory analysis on the structure of 3-aminobenzotrifluoride. Spectrochim Acta A 67:214–224

    Article  CAS  Google Scholar 

  54. Fukui K (1982) Role of frontier orbitals in chemical reactions. Science 218:747–754

    Article  CAS  PubMed  Google Scholar 

  55. Tanış E, Babur Şaş E, Kurban M, Kurt M (2017) The structural, electronic and spectroscopic properties of 4FPBAPE molecule: experimental and theoretical study. J Mol Struct 1154:301–318

    Article  Google Scholar 

  56. Hughbanks T, Hoffmann R (1983) Chains of trans-edge-sharing molybdenum octahedra: metal–metal bonding in extended systems. J Am Chem Soc 105:3528–3537

    Article  CAS  Google Scholar 

  57. Małecki JG (2010) Synthesis, crystal, molecular and electronic structures of thiocyanate ruthenium complexes with pyridine and its derivatives as ligands. Polyhedron 29:1973–1979

    Article  CAS  Google Scholar 

  58. Chen M, Waghmare UV, Friend CM, Kaxiras E (1998) A density functional study of clean and hydrogen-covered α-MoO3(010):α-MoO3(010): electronic structure and surface relaxation. J Chem Phys 109:6854–6860

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emine Tanış.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cankaya, N., Tanış, E., Gülbaş, H.E. et al. A new synthesis of limonene copolymer: experimental and theoretical analysis. Polym. Bull. 76, 3297–3327 (2019). https://doi.org/10.1007/s00289-018-2543-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2543-3

Keywords

Navigation