Skip to main content

Advertisement

Log in

An investigation on polymer ion exchange membranes used as separators in low-energy microbial fuel cells

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

An ion exchange membrane is a polymer matrix of cross-linked polyvinyl chloride macromolecular chains, on which are grafted ionic functional sites. The transport numbers of two metal ions and proton through these membranes were determined using the well-known electrochemical Hittorf’s method. The cation exchange membrane Nafion, having sulfonic reactional site (–SO3), yielded the transport number of copper relatively less than that of sodium, leaving way to proton to be transported. In contrast, the anion membrane of alkyl ammonium reactional site (–NR4+) prevented the transfer of cation metals and allowed the proton to displace by defect of permselectivity. These two membranes were used as separators in microbial fuel cells (MFC). In effect, the MFC with the anion membrane AMX, gave relatively higher power density (1.10 mW/m2) compared to the cation exchange membrane Nafion (0.45 mW/m2). Really, with the AMX separator, the metal ions present in the wastewater anolyte compartment were blocked by the membrane giving way to the protons to displace freely and be reduced efficiently at the cathode. In the mono-compartment cell, the ions moved sideways between anode and cathode, yielding the highest power density (11.90 mW/m2) so far obtained. The pH adjustment of anolyte and cathode compartments support, therefore, strongly the cell voltage evolutions. In addition, the cyclic voltammetry results showed that the electroactive biofilm of the bioanode using the AMX membrane described a diffusion-limited process, while that of the Nafion membrane made in evidence the adsorption monolayer of redox species. Besides, the electrochemical impedance spectroscopy revealed that the charge transfer resistance at the interface bioanode/biofilm decreased drastically from 728 to 18 Ω cm2 for Nafion MFC during 11 days of functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Innocent C, Huguet P, Bribes JL, Pourcelly G, Kameche M (2001) Characterisation of cation exchange membrane in hydro-organic media by electrochemistry and Raman spectroscopy. Phys Chem Chem Phys 3:1481–1485

    Article  CAS  Google Scholar 

  2. Kameche M, Xu F, Christophe I, Pourcelly G (2003) Electrodialysis in water-ethanol solutions: application to the acidification of organic salts. Desalination 154:9–15

    Article  CAS  Google Scholar 

  3. Kameche M, Xu F, Innocent C, Pourcelly G, Derriche Z (2007) Characterisation of Nafion®117 membrane modified chemically with a conducting polymer: an application to the demineralisation of sodium iodide organic solutions. Sep Purif Technol 52:497–503

    Article  CAS  Google Scholar 

  4. Xu F, Kameche M, Innocent C (2013) Transport of ions and solvent through a Nafion membrane modified with polypyrrole. J Membrane Sci Technol 1:108–116

    Google Scholar 

  5. Xu F, Innocent C, Bonnet B, Jones DJ, Rozière J (2005) Chemical modification of perfluorosulfonated membranes with pyrrole for fuel cell application: preparation, characterisation and methanol transport. Fuel Cells 5:398–405

    Article  CAS  Google Scholar 

  6. Wang L, Zhu GM, Li JQ, Gao CM (2011) Synthesis and characterization of partially fluorinated poly(fluorenyl ether ketone)s with different degrees of sulfonation as proton exchange membranes. Polym Bull 66:925–937

    Article  CAS  Google Scholar 

  7. Mohy Eldin MS, Nassr AA, Kashyout AB, Hassan EA (2017) Novel sulfonated poly(glycidyl methacrylate) grafted Nafion membranes for fuel cell applications. Polym Bull 74:5195–5220

    Article  CAS  Google Scholar 

  8. Lee H, Choi J, Han JY, Kim H, Sung Y, Hmailto K, Henkensmeier D, Cho EA, Jang JH, Yoo SJ (2013) Synthesis and characterization of poly(benzimidazolium) membranes for anion exchange membrane fuel cells. Polym Bull 70:2619–2631

    Article  CAS  Google Scholar 

  9. Harnisch F, Warmbier R, Schneider R, Schröder U (2009) Modeling the ion transfer and polarization of ion exchange membranes in bioelectrochemical systems. Bioelectrochemistry 75:136–141

    Article  CAS  PubMed  Google Scholar 

  10. Caprarescu S, Ianchis R, Radu A, Sarbu A, Somoghi R, Trica B, Alexandrescu E, Spataru C, Fierascu R, Ion-Ebrasu D, Preda S, Atanase L, Donescu D (2017) Synthesis, characterization and efficiency of new organically modified montmorillonite polyethersulfone membranes for removal of zinc ions from wastewasters. Appl Clay Sci 137:135–142

    Article  CAS  Google Scholar 

  11. Caprarescu S, CosminCorobea M, Purcar V, IlieSpataru C, Ianchis R, Vasilievici G, Vuluga Z (2015) San copolymer membranes with ion exchangers for Cu(II) removal from synthetic wastewater by electrodialysis. J Environ Sci 35:27–37

    Article  Google Scholar 

  12. Caprarescu S, Miron AR, Purcar V, Radu A, Sarbu A, Ion-Ebrasu D, Atanase L, Ghiurea M (2016) Efficient removal of Indigo Carmine dye by a separation process. Water Sci Technol 74:2462–2473

    Article  CAS  PubMed  Google Scholar 

  13. Caprarescu S, Miron AR, Purcar V, Radu A, Sarbu A, Ianchis R (2017) Commercial gooseberry buds extract containing membrane for removal of methylene blue dye from synthetic wastewaters. Rev Chim-Bucharest 68:1757–1762

    CAS  Google Scholar 

  14. Caprarescu S, Radu A, Purcar V, Sarbu A, Vaireanu D, Ianchis R, Ghiurea M (2014) Removal of copper ions from simulated wastewaters using different bicomponent polymer membranes. Water Air Soil Poll 225:2079–2086

    Article  CAS  Google Scholar 

  15. Mardiana U, Innocent C, Jarrar H, Cretin M, Buchari Gandasasmita S (2015) Electropolymerized neutral red as redox mediator for yeast fuel cell. Int J Electrochem Sci 10:8886–8898

    CAS  Google Scholar 

  16. Rousseau R (2013) Production de biohydrogène par électro-catalysemicrobienne. Dissertation, University of Toulouse, p 35–36

  17. Liu H, Ramnarayanan R, Logan BE (2004) Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol 38:2281–2285

    Article  CAS  PubMed  Google Scholar 

  18. Logan B, Regan JM (2006) Microbial challenges. Environ Sci Technol 40:5172–5180

    Article  CAS  PubMed  Google Scholar 

  19. Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23:291–292

    Article  CAS  PubMed  Google Scholar 

  20. Cercado-Quezada B, Delia ML, Bergel A (2010) Testing various food-industry wastes for electricity production in microbial fuel cell. Bioresour Technol 101:2748–2754

    Article  CAS  PubMed  Google Scholar 

  21. Wang X, Feng YJ, Lee H (2008) Electricity production from beer brewery wastewater using single chamber microbial fuel cell. Water Sci Technol 57:1117–1121

    Article  CAS  PubMed  Google Scholar 

  22. Rabaey K, Lissens G, Siciliano SD, Verstraete WA (2003) Microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol Lett 25:1531–1535

    Article  CAS  PubMed  Google Scholar 

  23. Sleutels THJA, Hamelers HVM, Rozendal RA, Buisman CJN (2009) Ion transport resistance in microbial electrolysis cells with anion and cation exchange membranes. Int J Hydrogen Energy 34:3612–3620

    Article  CAS  Google Scholar 

  24. Saratale GD, Saratale RG, Kashif SM, Zhen G, Kumar G, Shin HS, Choi YG, Kim SH (2017) A comprehensive overview on electro-active biofilms, role of exoelectrogens and their microbial niches in microbial fuel cells (MFCs). Chemosph J 178:534–547

    Article  CAS  Google Scholar 

  25. Ghouri ZK, Al-Meer S, Barakat NAM, Kim HY (2017) ZnO@C (core@shell) microspheres derived from spent coffee grounds as applicable non-precious electrode material for DMFCs. SCI. REP-UK 7:1738–1746

    Article  CAS  Google Scholar 

  26. Ghouri ZK, Barakat NAM, Kim HY (2015) Influence of copper content on the electrocatalytic activity toward methanol oxidation of CoχCuy alloy nanoparticles-decorated CNFs. SCI. REP-UK 5:16695–16707

    Article  CAS  Google Scholar 

  27. Ghouri ZK, Barakat NAM, Kim HY, Park M, Khalil KA, El-Newehy MH, Al-Deyab SS (2016) Nano-engineered ZnO/CeO2 dots@CNFs for fuel cell application. Arab. J. Chem. 9:219–228

    Article  CAS  Google Scholar 

  28. Ghouri ZK, Barakat NAM, Obaid M, Lee JH, Kim HY (2015) Co/CeO2-decorated carbon nanofibers as effective non-precious electro-catalyst for fuel cells application in alkaline medium. Ceram Int 41:2271–2278

    Article  CAS  Google Scholar 

  29. Ghouri ZK, Barakat NAM, Park M, SuhkKim B, Kim HY (2015) Synthesis and characterization of Co/SrCO3 nanorods-decorated carbon nanofibers as novel electrocatalyst for methanol oxidation in alkaline medium. Ceram Int 41:6575–6582

    Article  CAS  Google Scholar 

  30. Mehellou A (2015) Elimination des métaux lourds par électrodialyse associée à l’échange d’ions. Dissertation, University of BADJI Mokhtar Annaba

  31. Kariduraganavar MY, Nagarale RK, Kittur AA, Kulkarni SS (2006) Ion-exchange membranes: preparative methods for electrodialysis and fuel cell applications. Desalination 197:225–246

    Article  CAS  Google Scholar 

  32. Xu TW (2005) Ion exchange membranes: state of their development and perspective. J Membr Sci 263:1–29

    Article  CAS  Google Scholar 

  33. Mohamed MN, Abdul HY (2009) Adsorption of some heavy metal ions from aqueous solutions on Nafion 117 membrane. Desalination 249:677–681

    Article  CAS  Google Scholar 

  34. Lorrain Y, Pourcelly G, Gavach C (1997) Transport mechanism of sulfuric acid through an anion exchange membrane. Desalination 109:231–333

    Article  CAS  Google Scholar 

  35. Hamani H, Lahcene D, Boufeldja C, Haddou B, Kameche M, Innocent C, Derriche Z (2011) Study of fouling of a cation exchange membrane with a surfactant using voltamperometry. Separ Sci Technol 46:2322–2331

    Article  CAS  Google Scholar 

  36. Ouis M, Kameche M, Innocent C, Charef M, Kebaili H (2017) Electro-polymerization of pyrrole on graphite electrode: enhancement of electron transfer in bioanode of microbial fuel cell. Polym Bull 75:669–684

    Article  CAS  Google Scholar 

  37. Lorain Y, (1995) Etude du défaut de sélectivité des membranes échangeuses d’anions au contact de solutions acides: Contribution à la réduction de défaut de sélectivité par modification chimique. Dissertation, University of Montpellier 2

  38. Cercado Quezada B (2009) Traitement de dechets issus de l’industrie agro-alimentaire par pile a combustible microbienne. Dissertation, University of Toulouse: p 29

  39. Charef MA, Kameche M, Ouis M, Laribi S, Innocent C (2015) Electrochemical and spectroscopic characterisations of cation exchange membrane equilibrated in acid and salt solutions: application as separator in microbial fuel cell. Phys Chem Liq 53:717–731

    Article  CAS  Google Scholar 

  40. Rozendal RA, Hamelers HV, Rabaey K, Keller J, Buisman CJ (2008) Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol 26:450–459

    Article  CAS  PubMed  Google Scholar 

  41. Logan BE, Call D, Cheng S, Hamelers HV, Sleutels TH, Jeremiasse AW, Rozendal RA (2008) Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol 42:8630–8640

    Article  CAS  PubMed  Google Scholar 

  42. Rousseau R, Délia ML, Bergel A (2014) A theoretical model of transient cyclic voltammetry for electroactive biofilms. Energy Environ Sci 7:1079–1094

    Article  Google Scholar 

  43. Rousseau R, Rimboud M, Délia ML, Bergel A, Basséguy R (2015) Electrochemical characterization of microbial bioanodes formed on a collector/electrode system in a highly saline electrolyte. Bioelectrochemistry 106:97–104

    Article  CAS  PubMed  Google Scholar 

  44. Rahimnejad M, Adhami A, Darvari S, Zirepour A, Oh S (2015) Microbial fuel cell as new technology for bioelectricity generation: a review. Alexandria Eng J 54:745–756

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. T. Sahraoui for technical assistance of SEM analysis in laboratory LMESM at USTO-MB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostefa Kameche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zerrouki, A., Kameche, M., Kebaili, H. et al. An investigation on polymer ion exchange membranes used as separators in low-energy microbial fuel cells. Polym. Bull. 75, 4947–4965 (2018). https://doi.org/10.1007/s00289-018-2305-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2305-2

Keywords

Navigation