Skip to main content
Log in

Polypyrrole/copper nanoparticles composite thin films for high-sensing performance

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In the present paper, we report the synthesis and application of polypyrrole thin films decorated by copper nanoparticles for the glucose detection. The PPy films were grown via, electrodeposition technique on stainless steel substrate. The structural study was carried out by X-ray diffraction study. The morphological study from field-emission-scanning electron microscopy depicted that decoration of copper nanoparticles over the polypyrrole thin film. The electroactivity of PPy/copper oxide/stainless steel electrode was explored using cyclic voltammetric study and chronoamperometry under pH = 7 ± 5. The optimum sensitivity of optimized second electrode PPy/is 100 µA mM−1 cm−2 with LOD 3 µM and regression coefficient R2 = 0.9951. The PPy/copper-oxide sensor exhibited remarkable stability and reproducibility with good non-enzymatic current sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Meng F, Shi W, Sun Y, Zhu X, Wu G, Ruan C, Liu X, Ge D (2013) Nonenzymatic biosensor based on CuxO nanoparticles deposited on polypyrrole nanowires for improving detectionrange. Biosens Bioelectron 42:141–147

    Article  CAS  PubMed  Google Scholar 

  2. Malhotra BD, Chaubey A, Singh SP (2006) Prospects of conducting polymers in biosensors. Anal Chim Acta 578:59–74

    Article  CAS  PubMed  Google Scholar 

  3. Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108:814–825

    Article  CAS  PubMed  Google Scholar 

  4. Fiorito PA, Brett CMA, Torresi SC (2006) Polypyrrole/copper hexacyanoferrate hybrid as redox mediator for glucose biosensors. Talanta 69:403–408

    Article  CAS  PubMed  Google Scholar 

  5. Yi X, Huang-Xian J, Hong-Yuan C (2000) Direct electrochemistry of horseradish peroxidase immobilized on a colloid/cysteamine-modified gold electrode. Anal Biochem 278:22–28

    Article  CAS  PubMed  Google Scholar 

  6. Zhang J, Oyama M (2004) A hydrogen peroxide sensor based on the peroxidase activity of hemoglobin immobilized on gold nanoparticles-modified ITO electrode. Electrochim Acta 50:85–90

    Article  CAS  Google Scholar 

  7. Strike DJ, Rooij NFD, Koudelka-Hep M, Ulmann M, Augustynski J (1992) Electrocatalytic oxidation of methanol on platinum microparticles in polypyrrole. Appl Electrochem 22:922–926

    Article  CAS  Google Scholar 

  8. Rau JR, Chen SC, Sun HW (1994) Characterization of a polypyrrole microsensor for nitrate and nitrite ions. Electrochim Acta 39:2773–2779

    Article  CAS  Google Scholar 

  9. Li J, Lin XQ (2007) Glucose biosensor based on immobilization of glucose oxidase in poly(o-aminophenol) film on polypyrrole-Pt nanocomposite modified glassy carbon electrode. Biosens Bioelectron 22:2898–2905

    Article  CAS  PubMed  Google Scholar 

  10. Bose CSC, Rajeshwar K (1992) Efficient electrocatalyst assemblies for proton and oxygen reduction: the electrosynthesis and characterization of polypyrrole films containing nanodispersed platinum particles. Electroanal Chem 333:235–256

    Article  CAS  Google Scholar 

  11. Chen W, Li CM (2007) Electrosynthesis and characterization of polypyrrole/Au nanocomposite. Electrochim Acta 52:2845-2849

    Article  CAS  Google Scholar 

  12. Roux S, Soler-Illia GJ, Champagne S, Audebert P, Sanchez C (2003) Titania/polypyrrole hybrid nanocomposites built from in-situ generated organically functionalized nanoanatase building blocks. Adv Mater 15:217–221

    Article  CAS  Google Scholar 

  13. Liu YC, Lee HT, Yang SJ (2006) Strategy for the syntheses of isolated fine silver nanoparticles and polypyrrole/silver nanocomposites on gold substrates. Electrochim Acta 51:3441–3445

    Article  CAS  Google Scholar 

  14. Ozcan L, Sahin M, Sahin Y (2008) Electrochemical preparation of a molecularly imprinted polypyrrole-modified pencil graphite electrode for determination of ascorbic acid. Sensors 8:5792–5805

    Article  CAS  PubMed  Google Scholar 

  15. Ozkorucuklu S, Sahin Y, Alsancak G (2008) Voltammetric behaviour of sulfamethoxazole on electropolymerized-molecularly imprinted overoxidized polypyrrole. Sensors 8:8463–8478

    Article  CAS  PubMed  Google Scholar 

  16. Wang L, Ma C, Zhang X, Ren Y, Yu Y (1995) Determination of tyrosine traces by adsorption voltammetry of its copper (II) complex. J Anal Chem 351:689–691

    CAS  Google Scholar 

  17. Liu L, Zhao F, Xio F, Zeng B (2008) Improved voltammetric response of L-tyrosine on multiwalled carbon nanotubes-ionic liquid composite coated glassy electrodes in the presence of cupric ion. Electroanalysis 20:2148–2152

    Article  CAS  Google Scholar 

  18. Liu K, Li Y, Zhang H, Liu Y (2018) Synthesis of the polypyrrole encapsulated copper nanowires with excellent oxidation resistance and temporal stability. Appl Surf Sci 439:226–231

    Article  CAS  Google Scholar 

  19. Aravindan N, Sangaranarayanan MV (2016) Influence of solvent composition on the anti-corrosion performance of copper–polypyrrole (Cu–PPy) coated 304 stainless steel. Prog Org Coat 95:38–45

    Article  CAS  Google Scholar 

  20. He X, Chen Y, Wang S, He W, Wang C, Zhang H, Li Q, Ai K (2018) Enhancing inductance of spiral copper inductor with BaFe12O19/poly (phenylene oxide) composite as an embedded magnetic core. Compos B 138:232–242

    Article  CAS  Google Scholar 

  21. Arena A, Scandurra G, Ciofi C (2017) Copper oxide chitosan nanocomposite: characterization and application in non-enzymatic hydrogen peroxide sensing. Sensors 17:2198–2209

    Article  CAS  Google Scholar 

  22. Qing L, Zhang B, Xing X, Zhao Y, Cai R, Wang W, Gu Q (2018) Biosynthesis of copper nanoparticles using Shewanella loihica PV-4 with antibacterial activity: novel approach and mechanisms investigation. J Hazard Mater 347:141–149

    Google Scholar 

  23. Liang J, Wei M, Wang Q, Zhao Z, Liu A, Yu Z, Tian Y (2018) Sensitive electrochemical determination of hydrogen peroxide using copper nanoparticles in a polyaniline film on a glassy carbon electrode. Anal Lett 51:512–522

    Article  CAS  Google Scholar 

  24. Kaviyarasan K, Anandan S, Mangalaraja RV, Sivasankar T, Ashokkumar M (2016) Sonochemical synthesis of Cu2O nanocubes for enhanced chemiluminescence applications. Ultrason Sonochem 29:388–393

    Article  CAS  PubMed  Google Scholar 

  25. Chen LY, Wang CW, Yuan Z, Chang HT (2014) Fluorescent gold nanoclusters: recent advances in sensing and imaging. Anal Chem 87:216–229

    Article  CAS  PubMed  Google Scholar 

  26. Chen PC, Roy P, Chen LY, Ravindranath R, Chang HT (2014) Gold and silver nanomaterial-based optical sensing systems. Part Part Syst Char 31:917–942

    Article  CAS  Google Scholar 

  27. Heller A, Feldman B (2008) Electrochemical glucose sensors and their applications in diabetes management. Chem Rev 108:2482–2505

    Article  CAS  PubMed  Google Scholar 

  28. Periasamy AP, Chang Y-J, Chen S-M (2011) Amperometric glucose sensor-based on glucose oxidase immobilised on geletin-multiwalled carbon nanotube modified glassy carbon electrode. Bioelectrochemistry 80:114–120

    Article  CAS  PubMed  Google Scholar 

  29. Roy P, Lin ZH, Liang CT, Chang HT (2012) Synthesis of enzyme mimics of iron telluride nanorods for the detection of glucose. Chem Commun 48:4079–4081

    Article  CAS  Google Scholar 

  30. Shiang YC, Huang CC, Chang HT (2009) Gold nanodot-based luminescent sensor for the detection of hydrogen peroxide and glucose. Chem Commun 23:3437–3439

    Article  CAS  Google Scholar 

  31. Yeh TY, Wang CI, Chang HT (2013) Photoluminescent C-dots@RGO for sensitive detection of hydrogen peroxide and glucose. Talanta 115:718–723

    Article  CAS  PubMed  Google Scholar 

  32. Mani V, Devadas B, Chen SM (2013) Direct electrochemistry of glucose oxidase at electrochemically reduced graphene oxide-multiwalled carbon nanotubes hybrid material modified electrode for glucose biosensor. Biosens Bioelectron 41:309–315

    Article  CAS  PubMed  Google Scholar 

  33. Park S, Boo H, Chung TD (2006) Electrochemical non-enzymatic glucose sensors. Anal Chim Acta 556:46–57

    Article  CAS  PubMed  Google Scholar 

  34. Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42:6060–6093

    Article  CAS  PubMed  Google Scholar 

  35. Leskovac V, Trivi S, Wohlfahrt G, Kandra J, Pericin D (2005) Glucose oxidase from Aspergillus niger: the mechanism of action with molecular oxygen, quinones, and one-electron acceptors. Int J Biochem Cell Biol 37:731–750

    Article  CAS  PubMed  Google Scholar 

  36. Rabiee M, Mirzadeh H, Ataie Jr A (2016) Unraveling the effects of process control agents on mechanical alloying of nanostructured Cu-Fe alloy. Ultrafine Grained Nanostruct Mater 49:17–21

    CAS  Google Scholar 

  37. Chokratanasombat P, Nisaratanporn E (2012) Preparation of ultrafine copper powders with controllable size via polyol process with sodium hydroxide addition. Eng J 16:40–46

    Article  Google Scholar 

  38. Ulubay S, Dursun Z (2010) Cu nanoparticles incorporated polypyrrole modified GCE for sensitive simultaneous determination of dopamine and uric acid. Talanta 80:1461–1466

    Article  CAS  PubMed  Google Scholar 

  39. Shackerya I, Patila U, Pezeshkib A, Shinde NM, Kanga S, Imb S, Juna SC (2016) Copper hydroxide nanorods decorated porous graphene foam electrodes for non-enzymatic glucose sensing. Electrochim Acta 191:954–961

    Article  CAS  Google Scholar 

  40. Lu N, Shao C, Li X, Shen T, Zhang M, Miao F, Zhang P, Zhang X, Wang K, Zhang Y, Liu Y (2014) CuO/Cu2O nanofibers as electrode materials for non-enzymatic glucose sensors with improved sensitivity. RSC Adv 4:31056–31061

    Article  CAS  Google Scholar 

  41. Khan R, Ahmad R, Rai P, Jang LW, Yun JH, Hahn YB, Lee IH (2014) Glucose-assisted synthesis of Cu2O shuriken-like nanostructures and their application as nonenzymatic glucose biosensors. Sens Actuators B 203:471–476

    Article  CAS  Google Scholar 

  42. Li Z, Ye C, Li X, Ding Y, Liang H, Zhao G, Wang Y (2018) A CuNi/C nanosheet array based on a metal–organic framework derivate as a supersensitive non-enzymatic glucose sensor. Nano-Micro Lett 10:28–38

    Article  CAS  Google Scholar 

  43. Pagare PK, Torane AP (2016) Band gap varied cuprous oxide (Cu2O) thin films as a tool for glucose sensing. Microchim Acta 183:2983–2989

    Article  CAS  Google Scholar 

  44. Li C (2006) Voltammetric determination of tyrosine based on an l-serine polymer film electrode. Colloid Surf B 50:147–151

    Article  CAS  Google Scholar 

  45. Alexander C, Andersson HS, Andersson LI, Ansell RJ, Kirsch N, Nicholls IA, O’Mahony J, Whitcombe MJ (2006) Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. J Mol Recogn 19:106–180

    Article  CAS  Google Scholar 

  46. Pardieu E, Cheap H, Vedrine C, Lazerges M, Lattach Y, Garnier F, Remita S, Pernelle C (2009) Molecularly imprinted conducting polymer based electrochemical sensor for detection of atrazine. Anal Chim Acta 649:236–245

    Article  CAS  PubMed  Google Scholar 

  47. Wen-Zhi L, You-Qin L (2009) Preparation of nano-copper oxide modified glassy carbon electrode by a novel film plating/potential cycling method and its characterization. Sens Actuators B 141:147–153

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. J. Fulari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamlayya, V.B., Fulari, V.J. Polypyrrole/copper nanoparticles composite thin films for high-sensing performance. Polym. Bull. 75, 4753–4767 (2018). https://doi.org/10.1007/s00289-018-2293-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2293-2

Keywords

Navigation