Skip to main content
Log in

Thermal degradation kinetics and density functional study of a macromonomer containing dual-lactone

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A macromonomer containing dual-lactone, MMDL, was characterized by thermal degradation kinetics and density functional theory (DFT) calculations. The frontier molecular orbitals, molecular structural geometry, molecular electrostatic potential (MEP) and electrostatic potential (ESP) maps were determined with the help of structure optimizations based on the DFT method with standard 3–21G* as a basis set that has polarization functions on the second row atoms only. The 3–21G* basis set comprises the same number of primitive Gaussian functions. The electronic properties, such as electron affinity, HOMO–LUMO energies, ionization energy, electronegativity, chemical potential, global hardness and softness, global electrophilicity were computed with the help of the DFT method. The MEP and ESP maps were determined to predict the reactive sites of the macromonomer. Finally, the activation energy and thermal degradation mechanism for the initial part of the decomposition process under non-isothermal conditions were determined from the thermogravimetric analysis by integral approximation methods. The decomposition activation energies of the macromonomer were computed with the help of Flynn–Wall–Ozawa, Coats–Redfern and Tang methods. The kinetic equations showed that the reaction mechanism was an R1 mechanism, which is a phase boundary-controlled reaction (one-dimensional movement) solid-state mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aggour YA, Abdel-Razik EA (1999) Graft copolymerization of end allenoxy polyoxyethylene macromonomer onto ethyl cellulose in a homogeneous system. Eur Polym J 35(12):2225–2228

    Article  CAS  Google Scholar 

  2. Tsukahara Y (1996) In: Salamone JC (ed) Polymeric materials encyclopedia, vol 6. CRC Press, Boca Raton, p 3918

    Google Scholar 

  3. Gnanou Y (1996) In: Salamone JC (ed) Polymeric materials encyclopedia, vol 6. CRC Press, Boca Raton, p 3933

    Google Scholar 

  4. Mecerreyes D, Atthoff B, Boduch KA, Trollsås M, Hedrick JL (1999) Unimolecular combination of an atom transfer radical polymerization initiator and a lactone monomer as a route to new graft copolymers. Macromolecules 32(16):5175–5182

    Article  CAS  Google Scholar 

  5. Dubois P, Degée P, Jérôme R, Teyssié P (1993) Macromolecular engineering of polylactones and polylactides. 11. Synthesis and use of alkylaluminum dialkoxides and dithiolates, as promoters of hydroxy telechelic poly(epsilon.-caprolactone) and .alpha., omega.-dihydroxy triblock copolymers containing outer polyester blocks. Macromolecules 26(11):2730–2735

    Article  CAS  Google Scholar 

  6. Pantazis D, Chalari I, Hadjichristidis N (2003) Anionic polymerization of styrenic macromonomers. Macromolecules 36(11):3783–3785

    Article  CAS  Google Scholar 

  7. Mecerreyes D, Pomposo JA, Bengoetxea M, Grande H (2000) Novel pyrrole end-functional macromonomers prepared by ring-opening and atom-transfer radical polymerizations. Macromolecules 33(16):5846–5849

    Article  CAS  Google Scholar 

  8. Amass W, Amass A, Tighe B (1998) A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym Int 47(2):89–144

    Article  CAS  Google Scholar 

  9. Kulkarni RK, Pani KC, Neuman C, Leonard F (1966) Polylactic acid for surgical implants. Arch Surg Chic 93(5):839–843

    Article  CAS  Google Scholar 

  10. Gilding DK, Reed AM (1979) Biodegradable polymers for use in surgery—polyglycolic/poly(actic acid) homo-and copolymers: 1. Polymer 20(12):1459–1464

    Article  CAS  Google Scholar 

  11. Middleton JC, Tipton AJ (1998) Synthetic biodegradable polymers as medical devices. Med Plast Biomater 5:30–39

    Google Scholar 

  12. Albertsson AC, Varma IK (2003) Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules 4(6):1466–1486

    Article  CAS  PubMed  Google Scholar 

  13. Kurt A (2009) Thermal decomposition kinetics of poly (nButMA-b-St) diblock copolymer synthesized by ATRP. J Appl Polym Sci 114(1):624–629

    Article  CAS  Google Scholar 

  14. Bezgin F, Demirelli K (2016) Synthesis, characterization and thermal degradation kinetics of photoresponsive graft copolymers. J Thermoplast Compos Mater 29(8):1135–1150

    Article  CAS  Google Scholar 

  15. Papageorgiou GZ, Tsanaktsis V, Papageorgiou DG, Chrissafis K, Exarhopoulos S, Bikiaris DN (2015) Furan-based polyesters from renewable resources: crystallization and thermal degradation behavior of poly(hexamethylene 2,5-furan-dicarboxylate). Eur Polym J 67:383–396

    Article  CAS  Google Scholar 

  16. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520(1):1–19

    Article  CAS  Google Scholar 

  17. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38(6):3098

    Article  CAS  Google Scholar 

  18. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785

    Article  CAS  Google Scholar 

  19. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652

    Article  CAS  Google Scholar 

  20. Demirelli K, Bezgin F (2012) Synthesis and characterization of lactone functional macromonomers by end group deactivation and their use in miktoarm star polymer. OJP Chem 2:42–55

    CAS  Google Scholar 

  21. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2010) Gaussian, Inc., Wallingford CT

  22. Dennington R, Keith T, Millam J (2010) GaussView, version 5. Semichem Inc., Shawnee Mission

    Google Scholar 

  23. Gordon MS (1980) The isomers of silacyclopropane. Chem Phys Lett 76(1):163–168

    Article  CAS  Google Scholar 

  24. Peterson JD, Vyazovkin S, Wight CA (2001) Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly (propylene). Macromol Chem Phys 202(6):775–784

    Article  CAS  Google Scholar 

  25. Flynn JH, Wall LA (1966) General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand 70(6):487–523

    Article  CAS  Google Scholar 

  26. Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38(11):1881–1886

    Article  CAS  Google Scholar 

  27. Doyle CD (1965) Series approximations to the equation of thermogravimetric data. Nature 207:290–291

    Article  CAS  Google Scholar 

  28. Tang W, Liu Y, Zhang CH, Wang C (2003) New approximate formula for Arrhenius temperature integral. Thermochim Acta 408:39

    Article  CAS  Google Scholar 

  29. Coats AW, Redfern JP (1964) Kinetic parameters from thermogravimetric data. Nature 201:68–69

    Article  CAS  Google Scholar 

  30. Asmadi A, Neumann MA, Kendrick J, Girard P, Perrin MA, Leusen FJ (2009) Revisiting the blind tests in crystal structure prediction: accurate energy ranking of molecular crystals. J Phys Chem B 113(51):16303–16313

    Article  CAS  PubMed  Google Scholar 

  31. Chan HC, Kendrick J, Leusen FJ (2011) Molecule VI, a benchmark crystal-structure-prediction sulfonimide: are its polymorphs predictable? Angew Chem Int Ed 50(13):2979–2981

    Article  CAS  Google Scholar 

  32. Ma S, Hill JO, Heng S (1991) A kinetic analysis of the pyrolysis of some Australian coals by nonisothermal thermogravimetry. J Therm Anal 37(6):1161–1177

    Article  CAS  Google Scholar 

  33. Jimenez A, Berenguer V, Lopez J, Sanchez A (1993) Thermal degradation study of poly(vinylchloride): kinetic analysis of thermogravimetric data. J Appl Polym Sci 50(9):1565–1573

    Article  CAS  Google Scholar 

  34. Gunasekaran S, Balaji RA, Kumeresan S, Anand G, Srinivasan S (2008) Experimental and theoretical investigations of spectroscopic properties of N-acetyl-5-methoxytryptamine. Can J Anal Sci Spectrosc 53:149–160

    CAS  Google Scholar 

  35. Fleming I (1976) Frontier orbitals and organic chemical reactions. Wiley, New York

    Google Scholar 

  36. Padmaja L, Ravikumar C, Sajan D, Hubert Joe I, Jayakumar VS, Pettit GR, Faurskov Nielsen O (2009) Density functional study on the structural conformations and intramolecular charge transfer from the vibrational spectra of the anticancer drug combretastatin-A2. J Raman Spectrosc 40(4):419–428

    Article  CAS  Google Scholar 

  37. Sagdinc S, Pir H (2009) Spectroscopic and DFT studies of flurbiprofen as dimer and its Cu(II) and Hg(II) complexes. Spectrochim Acta Part A Mol Biomol Spectrosc 73(1):181–194

    Article  CAS  Google Scholar 

  38. Parr RG, Szentpaly LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121(9):1922–1924

    Article  CAS  Google Scholar 

  39. Chattaraj PK, Maiti B, Sarkar U (2003) Philicity: a unified treatment of chemical reactivity and selectivity. J Phys Chem A 107(25):4973–4975

    Article  CAS  Google Scholar 

  40. Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68(8):3801–3807

    Article  CAS  Google Scholar 

  41. Scrocco E, Tomasi J (1973) The electrostatic molecular potential as a tool for the interpretation of molecular properties. In: Davison A, Dewar MJS (eds) New concepts II. Current Chemistry, vol 42. Springer, Berlin, pp 95–170

Download references

Acknowledgements

The authors wish to thank Bitlis Eren University for furnishing the funds to obtain the Gaussian software used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feride Akman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akman, F., Duran, A. Thermal degradation kinetics and density functional study of a macromonomer containing dual-lactone. Polym. Bull. 75, 2953–2969 (2018). https://doi.org/10.1007/s00289-017-2198-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2198-5

Keywords

Navigation