Skip to main content
Log in

Effects of carboxylated multi-walled carbon nanotubes having different outer diameters on hollow fiber ultrafiltration membrane fabrication and characterization by electrochemical impedance spectroscopy

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The effects of different outer diameters and concentrations of multi-walled carbon nanotubes on polysulfone (PS) hollow fiber membranes were investigated. Nanocomposite polymer solutions were formed by adding 0.01, 0.05, 0.2 and 0.5 wt% multi-walled-carbon nanotubes (MWCNT), having 20–30, 8–15 and <8 nm outer diameters, to PS. Subsequently, fabricated membranes were characterized according to their dope solution viscosity; surface morphology, hydrophilicity and charge; membrane permeability. The effects of MWCNT addition on membrane performance were determined by electrochemical impedance spectroscopy (EIS) as well as by reversible and irreversible fouling ratios. EIS data showed that double-layer capacitance (C dl) values of membranes were increased as negative charge density on membranes was increased. Moreover, EIS measurements indicated a decrease in the C dl dependent on the BSA filtration. This study demonstrated that EIS can be successfully used for hollow fiber membrane configuration. It also showed that EIS can be used for the surface characterization and membrane performance of hollow fiber nanocomposite membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Baker WR (2004) Membrane technology and applications, 2nd edn. Wiley Press, Oxford. doi:10.1002/0470020393

    Book  Google Scholar 

  2. Han LF, Xu ZL, Yu LY, Wei YM, Cao Y (2010) Performance of PVDF/multinanoparticles composite hollow fibre ultrafiltration membranes. Iran Polym J 19(7):553–565

    CAS  Google Scholar 

  3. Razmjou A, Resosudarmo A, Holmes RL, Li H (2011) The effect of modified TiO2 nanoparticles on the polyethersulfone ultrafiltration hollow fiber membranes. Desalination 287:271–280

    Article  CAS  Google Scholar 

  4. Wang T, Zhang Y, Li G, Li H (2009) Preparation and characterization of alumina hollow fiber membranes. Front Chem Eng Chin 3:265–271

    Article  CAS  Google Scholar 

  5. Turken T, Sengur-Tasdemir R, Koseoglu-Imer DY, Koyuncu I (2015) Determination of filtration performances of nanocomposite hollow fiber membranes with silver nanoparticles. Environ Eng Sci 32(8):656–665. doi:10.1089/ees.2014.0080

    Article  CAS  Google Scholar 

  6. Liu TY, Tong Y, Liu ZH, Lin HH, Lin YK, Van der Bruggen B, Wang XL (2015) Extracellular polymeric substances removal of dual-layer (PES/PVDF) hollow fiber UF membrane comprising multi-walled carbon nanotubes for preventing RO biofouling. Sep Purif Technol 148:57–67

    Article  CAS  Google Scholar 

  7. Wei G, Chen S, Fan X, Quan X, Yu H (2015) Carbon nanotube hollow fiber membranes: high-throughput fabrication, structural control and electrochemically improved selectivity. J Membr Sci 493:97–105

    Article  CAS  Google Scholar 

  8. Yin J, Zhu G, Deng B (2013) Multi-walled carbon nanotubes (MWNTs)/polysulfone (PSU) mixed matrix hollow fiber membranes for enhanced water treatment. J Membr Sci 437:237–248

    Article  CAS  Google Scholar 

  9. Sengur R, de Lannoy CF, Turken T, Wiesner M, Koyuncu I (2015) Fabrication and characterization of hydroxylated and carboxylated multiwalled carbon nanotube/polyethersulfone (PES) nanocomposite hollow fiber membranes. Desalination 359:123–140

    Article  CAS  Google Scholar 

  10. Zhang X, Lang WZ, Yan X, Lou ZY, Chen XF (2015) Influences of the structure parameters of multi-walled carbon nanotubes(MWNTs) on PVDF/PFSA/O-MWNTs hollow fiber ultrafiltration membranes. J Membr Sci. doi:10.1016/j.memsci.2015.10.034

    Article  Google Scholar 

  11. Shah P, Murthy CN (2013) Studies on the porosity control of MWCNT/polysulfone composite membrane and its effect on metal removal. J Membr Sci 437:90–98

    Article  CAS  Google Scholar 

  12. Zhang X, Lang WZ, Xu HP, Yan X, Guo YJ, Chu LF (2014) Improved performances of PVDF/PFSA/O-MWNTs hollow fiber membranes and the synergism effects of two additives. J Membr Sci 469:458–470

    Article  CAS  Google Scholar 

  13. Coster HGL, Chilcott TC, Coster ACF (1996) Impedance spectroscopy of interfaces, membranes and ultrastructures. Bioelectrochem Bioenerg 40:79–98

    Article  CAS  Google Scholar 

  14. Chang BY, Park SM (2010) Electrochemical impedance spectroscopy. Annu Rev Anal Chem 3:207–229. doi:10.1146/annurev.anchem.012809.102211

    Article  CAS  Google Scholar 

  15. Bannwarth S, Darestani M, Coster H, Wessling M (2015) Characterization of hollow fiber membranes by impedance spectroscopy. J Membr Sci 473:318–326

    Article  CAS  Google Scholar 

  16. Caprarescu S, Radu A-L, Purcar V, Ianchis R, Sarbu Aİ, Ghiurea M, Nicolae C, Modrogan CA, Vaireanua DI, Périchaudd A, Ion Ebrasu DI (2015) Adsorbents/ion exchangers-PVA blend membranes: preparation, characterization and performance for the removal of Zn2+ by electrodialysis. Appl Surf Sci 329:65–75

    Article  CAS  Google Scholar 

  17. Park JS, Choi JH, Woo JJ, Moon SH (2006) An electrical impedance spectroscopic (EIS) study on transport characteristics of ion-exchange membrane systems. J Colloid Interface Sci 300:655–662

    Article  CAS  PubMed  Google Scholar 

  18. Tamiasso Martinhon P, Carreno J, Sousa CR, Barcia OE, Mattos OR (2006) Electrochemical impedance spectroscopy of lead(II) ion-selective solid-state membranes. Electrochim Acta 51:3022–3028

    Article  CAS  Google Scholar 

  19. Benavente J, Can A, Ariza MJ, Lozano AE, de Abajo J (2001) Electrochemical parameters of sulfonated polyether ether sulfone/membranes in HCl solutions determined by impedance spectroscopy and membrane potential measurements. Solid State Ion 145:53–60

    Article  CAS  Google Scholar 

  20. Park JS, Chilcott TC, Coster HGL, Moon SH (2005) Characterization of BSA-fouling of ion-exchange membrane systems using a subtraction technique for lumped data. J Membr Sci 246:137–144

    Article  CAS  Google Scholar 

  21. Sengur-Tasdemir R, Guler-Gokce Z, Sarac AS, Koyuncu I (2017) Determination of membrane protein fouling by UV spectroscopy and electrochemical impedance spectroscopy. Polym Plast Technol Eng. doi:10.1080/03602559.2017.1300816

    Article  Google Scholar 

  22. Sim LN, Wang ZJ, Gua J, Coster HGL, Fane AG (2013) Detection of reverse osmosis membrane fouling with silica, bovine serum albumin and their mixture using in situ electrical impedance spectroscopy. J Membr Sci 443:45–53

    Article  CAS  Google Scholar 

  23. Darestani MT, Chilcott TC, Coster HGL (2014) Electrical impedance spectroscopy study of piezoelectric PVDF membranes. J Solid State Electrochem 18:595–605

    Article  CAS  Google Scholar 

  24. Xu Y, Wang M, Ma Z, Gao C (2011) Electrochemical impedance spectroscopy analysis of sulfonated polyethersulfone nanofiltration membrane. Desalination 271:29–33

    Article  CAS  Google Scholar 

  25. Benavente J, Zhang X, Valls RG (2005) Modification of polysulfone membranes with polyethylene glycol and lignosulfate: electrical characterization by impedance spectroscopy measurements. J Colloid Interface Sci 285:273–280

    Article  CAS  PubMed  Google Scholar 

  26. Cañas A, Ariza MJ, Benavente J (2001) Characterization of active and porous sublayers of a composite reverse osmosis membrane by impedance spectroscopy, streaming and membrane potentials, salt diffusion and X-ray photoelectron spectroscopy measurements. J Membr Sci 183:135–146

    Article  Google Scholar 

  27. Chilcott TC, Chan M, Gaedt L, Nantawisarakul T, Fane AG, Coster HGL (2002) Electrical impedance spectroscopy characterisation of conducting membranes I. Theory. J Membr Sci 195:153–167

    Article  CAS  Google Scholar 

  28. Gaedt L, Chilcott TC, Chan M, Nantawisarakul T, Fane AG, Coster HGL (2002) Electrical impedance spectroscopy characterisation of conducting membranes II. Experimental. J Membr Sci 195:169–180

    Article  CAS  Google Scholar 

  29. Kondo T, Lee S, Honda K, Kawai T (2009) Conductive diamond hollow fiber membranes. Electrochem Commun 11:1688–1691

    Article  CAS  Google Scholar 

  30. Yang N, Tan X, Ma Z, Thursfield A (2009) Fabrication and characterization of Ce0.8Sm0.2O1.9 microtubular dual-structured electrolyte membranes for application in solid oxide fuel cell technology. J Am Ceram Soc 92:2544–2550

    Article  CAS  Google Scholar 

  31. Sengur-Tasdemir R, Urper GM, Turken T, Genceli EA, Tarabara VV, Koyuncu I (2016) Combined effects of hollow fiber fabrication conditions and casting mixture composition on the properties of polysulfone ultrafiltration membranes. Separ Sci Tech 51:2070–2079. doi:10.1080/01496395.2016.1198811

    Article  CAS  Google Scholar 

  32. Sengur R (2013) Fabrication and characterization of polyethersulfone (pes)/multiwalled carbon nanotube hollow fiber ultrafiltration membranes. Istanbul Technical University, Istanbul

    Google Scholar 

  33. Paar A (2009) Instruction manual SurPASS electrokinetic analyzer. Graz, Austria

    Google Scholar 

  34. Ohya H, Shiki S, Kawakami H (2009) Fabrication study of polysulfone hollow fiber microfiltration membranes: optimal dope viscosity for nucleation and growth. J Membr Sci 326:293–302

    Article  CAS  Google Scholar 

  35. Qiu S, Wu L, Pan X, Zhang L, Chen H, Gao C (2009) Preparation and properties of functionalized carbon nanotube/psf blend ultrafiltration membranes. J Membr Sci 342:165–172

    Article  CAS  Google Scholar 

  36. Lee J, Kim M, Hong CK, Shim SE (2007) Measurement of the dispersion stability of pristine and surface-modified multiwalled carbon nanotubes in various nonpolar and polar solvents. Meas Sci Technol 18:3707–3712

    Article  CAS  Google Scholar 

  37. Zhu WP, Gao J, Sun SP, Zhang S, Chung TC (2015) Poly(amidoamine) dendrimer (PAMAM) grafted on thin film composite (TFC) nanofiltration (NF) hollow fiber membranes for heavy metal removal. J Membr Sci 487:117–126

    Article  CAS  Google Scholar 

  38. Guler Z, Erkoc P, Sarac AS (2015) Electrochemical impedance spectroscopic study of single-stranded DNA-immobilized electroactive polypyrrole-coated electrospun poly (ε-caprolactone) nanofibers. Mater Express 5(4):269–279

    Article  CAS  Google Scholar 

  39. Guler Z, Sarac AS (2016) Electrochemical impedance and spectroscopy study of the edc/nhs activation of the carboxyl groups on poly (ɛ-caprolactone)/poly (m-anthranilic acid) nanofibers. Express Polym Lett 10(2):96–110

    Article  CAS  Google Scholar 

  40. Baricci A, Casalegno A (2015) A simple analytical approach to simulate the electrochemical impedance response of flooded agglomerates in polymer fuel cells. Electrochim Acta 157:324–332

    Article  CAS  Google Scholar 

  41. Dagli U, Guler Z, Sarac AS (2015) Covalent immobilization of tyrosinase on electrospun polyacrylonitrile/polyurethane/poly(m-anthranilic acid) nanofibers: an electrochemical impedance study. Polym Plast Technol Eng 54(14):1494–1504. doi:10.1080/03602559.2015.1010218

    Article  CAS  Google Scholar 

  42. Golshaei R, Guler Z, Sarac AS (2015) (Au/PANA/PVAc) nanofibers as a novel composite matrix for albumin and streptavidin immobilization. Mater Sci Eng C 60:260–275

    Article  CAS  Google Scholar 

  43. Lu X, Duo H, Yuan C, Yang S, Hao L, Zhang F, Zhang X (2012) Polypyrrole/carbon nanotube nanocomposite enhanced the electrochemical capacitance of flexible graphene film for supercapacitors. J Power Sourc 197:319–324

    Article  CAS  Google Scholar 

  44. Si A, Gopu G, Vedhi C (2012) Synthesis and characterization of poly anthranilic acid metal nanocomposites. Open J Synth Theory Appl 1(1):1–8

    Article  CAS  Google Scholar 

  45. Watkins EJ, Pfromm PH (1999) Capacitance spectroscopy to characterize organic fouling of electrodialysis membranes. J Membr Sci 162:213–218

    Article  Google Scholar 

  46. Jain R (2009) Carbon nanotube reinforced polyacrylonitrile and poly(etherketone) fibers. Georgia Institute of Technology, Georgia

    Google Scholar 

  47. Wang J, Pui DYH (2013) Dispersion and filtration of carbon nanotubes (CNTs) and measurement of nanoparticle agglomerates in diesel exhaust. Chem Eng Sci 85:69–76

    Article  CAS  PubMed  Google Scholar 

  48. Zeng X et al (2011) Characteristics of the electrical percolation in carbon nanotubes/polymer nanocomposites. J Phys Chem C 115(44):21685–21690

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are grateful to TUBITAK (The Scientific and Technological Research Council of Turkey) for their financial support under grant (Project No: 113Y359).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Esra A. Genceli or A. Sezai Sarac.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Genceli, E.A., Sengur-Tasdemir, R., Urper, G.M. et al. Effects of carboxylated multi-walled carbon nanotubes having different outer diameters on hollow fiber ultrafiltration membrane fabrication and characterization by electrochemical impedance spectroscopy. Polym. Bull. 75, 2431–2457 (2018). https://doi.org/10.1007/s00289-017-2155-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2155-3

Keywords

Navigation