Skip to main content
Log in

The shape memory effect of crosslinked ultra-high-molecular-weight polyethylene prepared by silane-induced crosslinking method

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Crosslinked ultra-high-molecular-weight polyethylene (UHMWPE) with excellent shape memory properties was prepared from the silane-grafted UHMWPE mixed with water-carrying agent by compression molding. The alkoxysilane hydrolyzation and condensation reaction of the silane-grafted UHMWPE allowed for the generation of Si–O–Si chemical crosslinking points between the polymeric chains. The Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy results confirmed that silane has been grafted on UHMWPE chains successfully. The resulting crosslinked products were characterized using dynamic mechanical analysis, gel measurement, impact test, tensile test, thermogravimetric analysis and shape memory bending test to obtain insight into the relationship between the structure and the properties. By controlling the content of water-carrying agent, the average molecular weights between crosslinking points (M c) reduced from 29,530 to 9540 g/mol. The decomposition temperature (T d) value increases from 467.7 for virgin resin to 491.5 °C for the crosslinked product with 91.64% gel ratio. The crosslinked materials showed much better shape memory effect than pure UHMWPE; the shape recovery ratio (R ν ) value of silane-induced crosslinked UHMWPE with 1.0 phr water-carrying agent reaches above 98.0% under multiple deformation recovery cycle. Therefore, the silane-induced crosslinking UHMWPE has a great potential in the shape memory material applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Rapoport N (2007) Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci 32:962–990

    Article  CAS  Google Scholar 

  2. Roy D, Cambre JN, Sumerlin BS (2010) Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci 35:278–301

    Article  CAS  Google Scholar 

  3. Ionov L (2010) Actively-moving materials based on stimuli-responsive polymers. J Mater Chem 20:3382–3390

    Article  CAS  Google Scholar 

  4. Jiang HY, Kelch S, Lendlein A (2006) Polymers move in response to light. Adv Mater 18:1471–1475

    Article  CAS  Google Scholar 

  5. Tobushi H, Hayashi S, Hoshio K, Miwa N (2006) Influence of strain-holding conditions on shape recovery and secondary-shape forming in polyurethane-shape memory polymer. Smart Mater Struct 15:1033–1038

    Article  CAS  Google Scholar 

  6. Meng H, Hu JL (2010) A brief review of stimulus-active polymers responsive to thermal, light, magnetic, electric, and water/solvent stimuli. J Intell Mater Syst Struct 21:859–885

    Article  CAS  Google Scholar 

  7. Hu JL, Yang ZH, Ji FL, Liu YQ (2005) Crosslinked polyurethanes with shape memory properties. Polym Int 54:854–859

    Article  CAS  Google Scholar 

  8. Zhang S, Yu Z, Govender T, Luo H, Li B (2008) A novel supramolecular shape memory material based on partial α-CD–PEG inclusion complex. Polymer 49:3205–3210

    Article  CAS  Google Scholar 

  9. Voit W, Ware T, Dasari RR, Smith P, Danz L, Simon D, Barlow S, Marder SR, Gall K (2010) High-strain shape-memory polymers. Adv Funct Mater 20:162–171

    Article  CAS  Google Scholar 

  10. Yu Z, Liu Y, Fan M, Meng X, Li B, Zhang S (2010) Effects of solvent, casting temperature, and guest/host stoichiometries on the properties of shape memory material based on partial α-CD–PEG inclusion complex. J Polym Sci Part B Polym Phys 48:951–957

    Article  CAS  Google Scholar 

  11. Xu L, Chen C, Zhong GJ, Lei J, Xu JZ, Hsiao BS, Li ZM (2012) Tuning the superstructure of ultrahigh-molecular-weight polyethylene/low-molecular-weight polyethylene blend for artificial joint application. ACS Appl Mater Interfaces 4:1521–1529

    Article  CAS  Google Scholar 

  12. Murase H, Kume T, Hashimoto T (2005) Time evolution of structures under shear-induced phase separation and crystallization in semidilute solution of ultrahigh molecular weight polyethylene. Macromolecules 38:8719–8728

    Article  CAS  Google Scholar 

  13. Na B, Lv R, Xu WF, Yu PS, Wang K, Fu Q (2007) Inverse temperature dependence of strain hardening in ultrahigh molecular weight polyethylene: role of lamellar coupling and entanglement density. J Phys Chem B 111:13206–13210

    Article  CAS  Google Scholar 

  14. Maksimkin A, Kaloshkin S, Zadorozhnyy M, Tcherdyntsev V (2014) Comparison of shape memory effect in UHMWPE for bulk and fiber state. J Alloys Compd 586:214–217

    Article  Google Scholar 

  15. Kaloshkin S, Maksimkin A, Kaloshkina M, Zadorozhnyy M, Churyukanova M (2012) Shape memory behavior of ultra-high molecular weight polyethylene. MRS Online Proc Libr 1403:91–97

    Article  Google Scholar 

  16. Kang PH, Nho YC (2001) The effect of γ-irradiation on ultra-high molecular weight polyethylene recrystallized under different cooling conditions. Radiat Phys Chem 60:79–87

    Article  Google Scholar 

  17. Takahashi Y, Shishido T, Yamamoto K, Masaoka T, Kubo K, Tateiwa T, Pezzotti G (2015) Mechanisms of plastic deformation in highly cross-linked UHMWPE for total hip components—the molecular physics viewpoint. J Mech Behav Biomed 42:43–53

    Article  CAS  Google Scholar 

  18. Muratoglu OK, Bragdon CR, O’Connor DO, Jasty M, Harris WH, Gul R, McGarry F (1999) Unified wear model for highly crosslinked ultra-high molecular weight polyethylenes (UHMWPE). Biomaterials 20:1463–1470

    Article  CAS  Google Scholar 

  19. Tang CY, Xie XL, Wu XC, Li RKY, Mai YW (2002) Enhanced wear performance of ultra-high molecular weight polyethylene crosslinked by organosilane. J Mater Sci Mater Med 13:1065–1069

    Article  CAS  Google Scholar 

  20. Voigt HU (1997) Preparing thermo-plastic or elastomeric materials for cross-linking of grafted silane. US Patent 4,048,129

  21. Glander F, Voigt HU (1997) Grafting of silane on thermoplastics or elastomers for purposes of cross-linking. US Patent 4,058,583

  22. Barzin J, Azizi H, Morshedian J (2007) Preparation of silane-grafted and moisture crosslinked low density polyethylene. Part II: Electrical, thermal and mechanical properties. Polym Plast Technol Eng 46:305–310

    Article  CAS  Google Scholar 

  23. Han CY, Bian JJ, Liu H, Han LJ, Wang SS, Dong LS, Chen S (2010) An investigation of the effect of silane water-crosslinking on the properties of poly(l-lactide). Polym Int 59:695–703

    CAS  Google Scholar 

  24. Chen TB, Wang JB, Shi PW, Li QY, Wu CF (2013) Effect of hot water and water-carrying agent on the properties of silane-water crosslinked linear low density polyethylene. Int Polym Proc 28:180–187

    Article  CAS  Google Scholar 

  25. Xu JW, Shi WF, Pang WM (2006) Synthesis and shape memory effects of Si–O–Si cross-linked hybrid polyurethanes. Polymer 47:457–465

    Article  CAS  Google Scholar 

  26. Reinitz SD, Carlson EM, Levine RAC, Franklin KJ, Citters DWV (2015) Dynamical mechanical analysis as an assay of cross-link density of orthopaedic ultra-high molecular weight polyethylene. Polym Test 45:174–178

    Article  CAS  Google Scholar 

  27. Sirisinha K, Kamphunthong W (2009) Rheological analysis as a means for determining the silane crosslink network structure and content in crosslinked polymer composites. Polym Test 28:636–641

    Article  CAS  Google Scholar 

  28. Socrates G (1980) Infrared characteristic group frequencies. Wiley-Interscience, New York

    Google Scholar 

  29. Yuen SM, Ma CCM, Chiang CL, Teng CC, Yu YH (2008) Poly(vinyl tri-ethoxysilane) modified MWCNT/polyimide nanocomposites: preparation, morphological, mechanical and electrical properties. J Polym Sci Part A Polym Chem 46:803–816

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding was provided by Shanghai Leading Academic Discipline (Grant No. B502), Shanghai Key Laboratory Project (Grant No. 08DZ2230500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuying Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Li, Q., Fu, Z. et al. The shape memory effect of crosslinked ultra-high-molecular-weight polyethylene prepared by silane-induced crosslinking method. Polym. Bull. 75, 2181–2196 (2018). https://doi.org/10.1007/s00289-017-2144-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2144-6

Keywords

Navigation