Skip to main content
Log in

Development of biocomposites from coir fibre and poly (caprolactone) by solvent casting technique

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, blends of poly (caprolactone) (PCL) with different content of coir fibre (CF) (2, 2.5 and 5 wt%) were fabricated by solvent casting technique to obtain a biodegradable composite. The PCL/CF composites obtained have been characterised using the X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and Electrodynamic fatigue testing machines. According to XRD patterns, the intensity of the peak in the pure PCL spectrum was found to decrease by the addition of coir fibre which then disappears when the CF content is 5 wt% is indicating that coir fibre inhibited the diffusion and deposition of PCL molecules. The FTIR absorption spectra for the PCL/CF blends showed that there was no new peak to represent the chemical interaction between the functional groups of coir fibre and poly (caprolactone). The SEM micrographs of the composites indicate inadequate wetting of coir fibre as filler content increases due to poor dispersion and interfacial adhesion. The tensile strength of the composites samples was found to increase with an increase in the fibre content up to 2.5 wt% on addition of coir fibre but with a reduction from 16.79 N/mm2 for the neat polymer to 5.08 N/mm2 for the blend with 5 wt% coir fibre (a 69.74% decrease). The addition of coir fibre reduces the elongation at break of the composites, whereas the Young modulus value of composites goes on increasing up to 182 N/mm2 for coir fibres volume fraction of 2.5 wt%. The behaviour of samples with high fibre content could be explained by insufficient fibre wetting and poor interfacial adhesion with no coupling agent in addition to the low aspect ratio of the coir particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhang J, Duan Y, Sato H et al (2005) Crystal modifications and thermal behaviour of poly (l-lactic acid) revealed by infrared spectroscopy. Macromolecules 38:8012–8021

    Article  CAS  Google Scholar 

  2. Yoshii F, Darwis D, Mitomo H, Makuuchi K (2000) Crosslinking of poly (ε-caprolactone) by radiation technique and its biodegradability. Radiat Phys Chem 57:417–420

    Article  CAS  Google Scholar 

  3. Tsuji H, Ikada Y (1996) Blends of aliphatic polyesters. I. Physical properties and morphologies of solution-cast blends from poly (DL-lactide) and poly (ε-caprolactone). J Appl Polym Sci 60:2367–2375

    Article  CAS  Google Scholar 

  4. Dell’Erba R, Groeninckx G, Maglio G, Malinconico M, Migliozzi A (2001) Immiscible polymer blends of semicrystalline biocompatible components: thermal properties and phase morphology analysis of PLLA/PCL blends. Polymer 42:7831–7840

    Article  Google Scholar 

  5. Kammer H, Kummerlöwe C (1994) Poly (-caprolactone) comprising blends-phase behavior and thermal properties. Adv Polym Blends Alloys Technol 5:132

    CAS  Google Scholar 

  6. Pasquini D, de Morais Teixeira E, da Silva Curvelo AA, Belgacem MN, Dufresne A (2008) Surface esterification of cellulose fibres: processing and characterisation of low-density polyethylene/cellulose fibres composites. Compos Sci Technol 68:193–201

    Article  CAS  Google Scholar 

  7. Torres F, Cubillas M (2005) Study of the interfacial properties of natural fibre reinforced polyethylene. Polym Testing 24:694–698

    Article  CAS  Google Scholar 

  8. Dominkovics Z, Danyadi L, Pukanszky B (2007) Surface modification of wood flour and its effect on the properties of PP/wood composites. Compos A Appl Sci Manuf 38:1893–1901

    Article  Google Scholar 

  9. Bengtsson M, Le Baillif M, Oksman K (2007) Extrusion and mechanical properties of highly filled cellulose fibre–polypropylene composites. Compos A Appl Sci Manuf 38:1922–1931

    Article  Google Scholar 

  10. Zampaloni M, Pourboghrat F, Yankovich S et al (2007) Kenaf natural fibre reinforced polypropylene composites: a discussion on manufacturing problems and solutions. Compos A Appl Sci Manuf 38:1569–1580

    Article  Google Scholar 

  11. Guffey VO, Sabbagh AB (2002) PVC/wood flour composites compatibilized with chlorinated polyethylene. J Vinyl Add Tech 8:259

    Article  CAS  Google Scholar 

  12. Mishra S, Naik J (2005) Effect of treatment of maleic anhydride on mechanical properties of natural fibre: polystyrene composites. Polym Plastic Technol Eng 44:663–675

    Article  CAS  Google Scholar 

  13. Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fibre reinforced polymer composites. Compos B Eng 42:856–873

    Article  Google Scholar 

  14. Mahzan S, Ahmad Zaidi AM, Arsat N, Hatta MNM, Ghazali MI, Rasool Mohideen S (2010) Study on sound absorption properties of coconut coir fibre reinforced composite with added recycled rubber. Int J Integr Eng 2:29–34

    Google Scholar 

  15. Misra R, Kumar S, Sandeep K, Misra A (2008) Some experimental and theoretical investigations on fire retardant coir/epoxy micro-composites. J Thermoplast Compos Mater 21:71–101

    Article  CAS  Google Scholar 

  16. Monteiro S, Terrones L, D’almeida J (2008) Mechanical performance of coir fibre/polyester composites. Polym Testing 27:591–595

    Article  CAS  Google Scholar 

  17. Júnior HS, Lopes F, Costa L, Monteiro S (2010) Mechanical properties of tensile tested coir fibre reinforced polyester composites. Rev Mater 15:113–118

    Google Scholar 

  18. Hussain SA, Pandurangadu V, Palanikuamr K (2011) Mechanical properties of green coconut fibre reinforced HDPE polymer composite. Int J Eng Sci Technol 3:7942–7952

    Article  Google Scholar 

  19. Roy JK, Akter N, Zaman HU et al (2014) Preparation and properties of the coir fiber-reinforced ethylene glycol dimethacrylate-based composite. J Thermoplast Compos Mater 27:35–51

    Article  CAS  Google Scholar 

  20. Borghesi DC, Molina MF, Guerra MA, Campos MGN (2016) Biodegradation study of a novel poly-caprolactone-coffee husk composite film. Mater Res 19(4):752–758

    Article  Google Scholar 

  21. Ludueña L, Vázquez A, Alvarez V (2012) Effect of lignocellulosic filler type and content on the behaviour of polycaprolactone-based eco-composites for packaging applications. Carbohyd Polym 87:411–421

    Article  Google Scholar 

  22. Hamid MZA, Ibrahim NA, Yunus WMZW, Zaman K, Dahlan M (2010) Effect of grafting on properties of oil palm empty fruit bunch fibre reinforced polycaprolactone biocomposites. J Reinf Plast Compos 29:2723–2731

    Article  Google Scholar 

  23. Zhao Q, Tao J, Yam RC, Mok AC, Li RK, Song C (2008) Biodegradation behaviour of polycaprolactone/rice husk eco-composite in simulated soil medium. Polym Degrad Stab 93:1571–1576

    Article  CAS  Google Scholar 

  24. Pappu A, Saxena M, Thakur VK, Sharma A, Haque R (2016) Facile extraction, processing and characterization of biorenewable sisal fibres for multifunctional applications. J Macromol Sci Part A 53:424–432

    Article  CAS  Google Scholar 

  25. Arbelaiz A, Fernández B, Valea A, Mondragon I (2006) Mechanical properties of short flax fibre bundle/poly (ε-caprolactone) composites: influence of matrix modification and fibre content. Carbohyd Polym 64:224–232

    Article  CAS  Google Scholar 

  26. Nitz H, Semke H, Landers R, Mülhaupt R (2001) Reactive extrusion of polycaprolactone compounds containing wood flour and lignin. J Appl Polym Sci 81:1972–1984

    Article  CAS  Google Scholar 

  27. Siqueira G, Bras J, Follain N, Belbekhouche S, Marais S, Dufresne A (2013) Thermal and mechanical properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals. Carbohyd Polym 91:711–717

    Article  CAS  Google Scholar 

  28. Iannace S, Nocilla G, Nicolais L (1999) Biocomposites based on sea algae fibres and biodegradable thermoplastic matrices. J Appl Polym Sci 73:583–592

    Article  CAS  Google Scholar 

  29. Pappu A, Patil V, Jain S, Mahindrakar A, Haque R, Thakur VK (2015) Advances in industrial prospective of cellulosic macromolecules enriched banana fibre resources: a review. Int J Biol Macromol 79:449–458

    Article  CAS  Google Scholar 

  30. Satyanarayana K, Pillai C, Sukumaran K, Pillai S, Rohatgi P, Vijayan K (1982) Structure property studies of fibres from various parts of the coconut tree. J Mater Sci 17:2453–2462

    Article  CAS  Google Scholar 

  31. Owolabi O, Czvikovszky T, Kovacs I (1985) Coconut-fiber-reinforced thermosetting plastics. J Appl Polym Sci 30:1827–1836

    Article  CAS  Google Scholar 

  32. Choudhury A, Kumar S, Adhikari B (2007) Recycled milk pouch and virgin low-density polyethylene/linear low-density polyethylene based coir fibre composites. J Appl Polym Sci 106:775–785

    Article  CAS  Google Scholar 

  33. Geethamma V, Mathew KT, Lakshminarayanan R, Thomas S (1998) Composite of short coir fibres and natural rubber: effect of chemical modification, loading and orientation of fibre. Polymer 39:1483–1491

    Article  CAS  Google Scholar 

  34. Goldberg D (1995) A review of the biodegradability and utility of poly (caprolactone). J Environ Polym Degrad 3:61–67

    Article  CAS  Google Scholar 

  35. Kirby R (1963) Vegetable Fibres: World Crop Series. Leonard Hill, Interscience, London, New York

    Google Scholar 

  36. Lewin M, Pearce E (1985) Fibre chemistry. Handbook of fibre science and technology, vol 4. Marcel Dekker Inc, New York and Basel

    Google Scholar 

  37. Liu J, Reni L, Wei Q et al (2011) Fabrication and characterization of polycaprolactone/calcium sulphate whisker composites. Express Polym Lett 5:742–752

    Article  CAS  Google Scholar 

  38. Oh SY, Yoo DI, Shin Y, Seo G (2005) FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohyd Res 340:417–428

    Article  CAS  Google Scholar 

  39. Erdtman H (1971) Lignins: occurrence, formation, structure and reactions, K. V. Sarkanen and C. H. Ludwig, Eds., John Wiley & Sons, Inc., New York. 916 pp. $35.00. J Polym Sci Part B Polym Lett 10(3):228–230

    Article  Google Scholar 

  40. Klemm D, Schumann D, Kramer F et al (2006) Nanocelluloses as innovative polymers in research and application. Polysaccharides Ii. Springer, New York, pp 49–96

    Google Scholar 

  41. Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (2004) General considerations on structure and reactivity of cellulose: section 2.4–2.4. 3. Compr Cell Chem Fundam Anal Methods 1:130–165

    Article  Google Scholar 

  42. Fan M, Dai D, Huang B (2012) Fourier transform infrared spectroscopy for natural fibres. Fourier transformmaterials analysis. InTech

  43. Yeh JT, Yang MC, Wu CJ, Wu CS (2009) Preparation and characterization of biodegradable polycaprolactone/multiwalled carbon nanotubes nanocomposites. J Appl Polym Sci 112:660–668

    Article  CAS  Google Scholar 

  44. Agarwal K, Prasad M, Sharma R, Setua D (2011) Studies on microstructural and thermophysical properties of polymer nanocomposite based on polyphenylene oxide and Ferrimagnetic iron oxide. Polym Testing 30:155–160

    Article  CAS  Google Scholar 

  45. Rao KMM, Rao KM (2007) Extraction and tensile properties of natural fibres: vakka, date and bamboo. Compos Struct 77:288–295

    Article  Google Scholar 

  46. Brahim SB, Cheikh RB (2007) Influence of fibre orientation and volume fraction on the tensile properties of unidirectional Alfa-polyester composite. Compos Sci Technol 67:140–147

    Article  Google Scholar 

  47. Graupner N (2009) Improvement of the mechanical properties of biodegradable hemp fibre reinforced poly (lactic acid)(PLA) composites by the admixture of man-made cellulose fibres. J Compos Mater 43:689–702

    Article  CAS  Google Scholar 

  48. Zhou J, Tang J, Meng H, Yu J (2008) Study on PP/calcium sulphate whisker composite. Eng Plastics Appl 36:19–22

    CAS  Google Scholar 

  49. Thomason J (2009) The influence of fibre length, diameter and concentration on the impact performance of long glass fibre reinforced polyamide 6, 6. Compos A Appl Sci Manuf 40:114–124

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support by The World Academy of Science (TWAS), and COMSATS Institute of Information Technology (CIIT), Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Chinedu Obasi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obasi, H.C., Chaudhry, A.A., Ijaz, K. et al. Development of biocomposites from coir fibre and poly (caprolactone) by solvent casting technique. Polym. Bull. 75, 1775–1787 (2018). https://doi.org/10.1007/s00289-017-2122-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2122-z

Keywords

Navigation