Skip to main content
Log in

Preparation and characterization of ABS and copper (II) sulfate coordination composites by planetary ball mill

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Acrylonitrile–butadiene–styrene (ABS) composites filled with anhydrous copper sulfate (CuSO4) particles were prepared by planetary ball mill. The ball milling process can provide CuSO4 particles of small sizes for homogeneous particle distribution in a matrix. To directly enhance the interaction between the two ingredients, a coordination reaction was generated by heat press at 180 °C. Fourier transform infrared, electron spin resonance, Ultraviolet–visible, and X-ray photoelectron spectroscopy were employed to investigate the coordination reaction. The results showed that a coordination reaction happened between nitrile groups (–CN) of ABS and copper ions (Cu2+) of CuSO4. The loss factor of dynamic mechanical analysis indicated the decrease of intermolecular friction due to a strong interaction between the matrix and the particles. The homogeneously dispersed, micro-sized CuSO4 particles were observed by scanning electron microscope. The interface was indistinguishable under the microscope indicating a well-bonded surface and good compatibility. In addition, dissolution behavior showed that the solvent resistance of the composites was significantly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Roslaniec Z, Broza G, Schulte K (2003) Nanocomposites based on multiblock polyester elastomers (PEE) and carbon nanotubes (CNT). Compos Interfaces 10:95–102. doi:10.1163/156855403763586819

    Article  CAS  Google Scholar 

  2. Nogales A, Broza G, Roslaniec Z, Schulte K, Šics I, Hsiao BS, Sanz A, García-Gutiérrez MC, Rueda DR, Domingo C, Ezquerra TA (2004) Low percolation threshold in nanocomposites based on oxidized single wall carbon nanotubes and poly (butylene terephthalate). Macromolecules 37:7669–7672. doi:10.1021/ma049440r

    Article  CAS  Google Scholar 

  3. Kota AK, Cipriano BH, Powell D, Raghavan SR, Bruck HA (2007) Quantitative characterization of the formation of an interpenetrating phase composite in polystyrene from the percolation of multiwalled carbon nanotubes. Nanotechnology 18:505705–505707. doi:10.1088/0957-4484/18/50/505705

    Article  Google Scholar 

  4. Shah R, Datashvili T, Cai T, Wahrmund J, Menard B, Menard KP, Perez J (2015) Effects of functionalised reduced graphene oxide on frictional and wear properties of epoxy resin. Mater Res Innov 19:97–106. doi:10.1179/1433075X14Y.0000000220

    Article  CAS  Google Scholar 

  5. Jipa S, Zaharescu T, Supaphol P (2010) Thermal stability of isotactic polypropylene modified with calcium carbonate nanoparticles. Polym Bull 64:783–790. doi:10.1007/s00289-009-0213-1

    Article  CAS  Google Scholar 

  6. Lu Y, Peng H, Shen K, Yan Z (2011) The study on the creep of calcium carbonate-filled polypropylene (PP/CaCO3) prepared at different vibration condition. Polym Bull 66:147–164. doi:10.1007/s00289-010-0317-7

    Article  CAS  Google Scholar 

  7. Liu H, Wang J, Wen S, Gong C, Zheng G, Xiong C, Gao L (2015) Processability, morphology, thermal, and mechanical properties of rigid PVC composites with liquid macromolecular modifier-coated CaCO3. Polym Compos 36:1286–1292. doi:10.1002/pc.23033

    Article  CAS  Google Scholar 

  8. Shi J, Qi W, Du C, Shi J, Cao S (2013) Micro/nanohybrid hierarchical poly (N-isopropylacrylamide)/calcium carbonate composites for smart drug delivery. J Appl Polym Sci 129:577–584. doi:10.1002/app.38718

    Article  CAS  Google Scholar 

  9. Zhang A, Zhao G, Guan Y (2013) Effect of surface modifiers and surface modification methods on properties of acrylonitrile-butadiene-styrene/poly (methyl methacrylate)/nano-calcium carbonate composites. J Appl Polym Sci 127:2520–2528. doi:10.1002/app.37577

    Article  CAS  Google Scholar 

  10. Kameya Y, Hayashi T, Motosuke M (2016) Stability of platinum nanoparticles supported on surface-treated carbon black. Appl Catal B Environ 189:219–225. doi:10.1016/j.apcatb.2016.02.049

    Article  CAS  Google Scholar 

  11. Krämer RH, Raza MA, Gedde UW (2007) Degradation of poly (ethylene-co-methacrylic acid)-calcium carbonate nanocomposites. Polym Degrad Stab 92:1795–1802. doi:10.1016/j.polymdegradstab.2007.07.006

    Article  Google Scholar 

  12. Rao S, Devi SN, Johns A, Kalkornsurapranee E, Sham Aan MP, Johns J (2016) Mechanical and thermal properties of carbon black reinforced natural rubber/polyvinyl alcohol fully-interpenetrating polymer networks. J Vinyl Addit Technol. doi:10.1002/vnl.21560

    Google Scholar 

  13. Wu Y, Wen S, Shen J, Jiang J, Hu S, Zhang L, Liu L (2015) Improved dynamic properties of natural rubber filled with irradiation-modified carbon black. Radiat Phys Chem 111:91–97. doi:10.1016/j.radphyschem.2015.02.020

    Article  CAS  Google Scholar 

  14. Chen S, Lu X, Zhang Z, Wang T, Pan F (2016) Preparation and Characterization of poly(methyl methacrylate)/reactive montmorillonite nanocomposites. Polym Compos. doi:10.1002/pc.23421

    Google Scholar 

  15. Wang P, Ma J, Wang Z, Shi F, Liu Q (2012) Enhanced separation performance of PVDF/PVP-g-MMT nanocomposite ultrafiltration membrane based on the NVP-grafted polymerization modification of montmorillonite (MMT). Langmuir 28:4776–4786. doi:10.1021/la203494z

    Article  CAS  Google Scholar 

  16. Okamoto M, Morita S, Kim YH, Kotaka T, Tateyama H (2001) Dispersed structure change of smectic clay/poly(methyl methacrylate) nanocomposites by copolymerization with polar comonomers. Polymer 42:1201–1206. doi:10.1016/S0032-3861(00)00419-5

    Article  CAS  Google Scholar 

  17. Manias E, Touny A, Wu L, Strawhecker K, Lu B, Chung TC (2001) Polypropylene/montmorillonite nanocomposites. Review of the synthetic routes and materials properties. Chem Mater 13:3516–3523. doi:10.1021/cm0110627

    Article  CAS  Google Scholar 

  18. Gatos KG, Thomann R, Karger-Kocsis J (2004) Characteristics of ethylene propylene diene monomer rubber/organoclay nanocomposites resulting from different processing conditions and formulations. Polym Int 53:1191–1197. doi:10.1002/pi.1556

    Article  CAS  Google Scholar 

  19. Chow WS, Ishak ZA, Karger-Kocsis J (2005) Atomic force microscopy study on blend morphology and clay dispersion in polyamide-6/polypropylene/organoclay systems. J Macromol Sci Part B Phys 43:1198–1204. doi:10.1002/polb.20408

    Article  CAS  Google Scholar 

  20. Karger-Kocsis J, Shang PP, Mohd Ishak ZA, Rösch M (2007) Melting and crystallization of in situ polymerized cyclic butylene terephthalates with and without organoclay: a modulated DSC study. Exp Polym Lett 1:60–68. doi:10.3144/expresspolymlett.2007.12

    Article  CAS  Google Scholar 

  21. Arribas A, Bermudez MD, Brostow W, Carrion-Vilches FJ, Olea-Mejia O (2009) Scratch resistance of a polycarbonate + organoclay nanohybrid. Exp Polym Lett 3:621–629. doi:10.3144/expresspolymlett.2009.78

    Article  CAS  Google Scholar 

  22. Pegoretti A, Dorigato A, Penati A (2007) Tensile mechanical response of polyethylene-clay nanocomposites. Exp Polym Lett 1:123–131. doi:10.3144/expresspolymlett.2007.21

    Article  CAS  Google Scholar 

  23. Chow WS, Ishak ZM, Karger-Kocsis J, Apostolov AA, Ishiaku US (2003) Compatibilizing effect of maleated polypropylene on the mechanical properties and morphology of injection molded polyamide 6/polypropylene/organoclay nanocomposites. Polymer 44:7427–7440. doi:10.1016/j.polymer.2003.09.006

    Article  CAS  Google Scholar 

  24. Baskaran R, Sarojadevi M, Vijayakumar CT (2011) Unsaturated polyester nanocomposites filled with nano alumina. J Mater Sci 46:4864–4871. doi:10.1007/s10853-011-5398-7

    Article  CAS  Google Scholar 

  25. Krämer RH, Blomqvist P, Hees PV, Gedde UW (2007) On the intumescence of ethylene-acrylate copolymers blended with chalk and silicone. Polym Degrad Stab 92:1899–1910. doi:10.1016/j.polymdegradstab.2007.06.014

    Article  Google Scholar 

  26. Gatos KG, Kameo K, Karger-Kocsis J (2007) On the friction and sliding wear of rubber/layered silicate nanocomposites. Exp Polym Lett 1:27–31. doi:10.3144/expresspolymlett.2007.6

    Article  CAS  Google Scholar 

  27. Xu R, Jia M, Li F, Wang H, Zhang B, Qiao J (2012) Preparation of mesoporous poly (acrylic acid)/SiO2 composite nanofiber membranes having adsorption capacity for indigo carmine dye. Appl Phys A 106:747–755. doi:10.1007/s00339-011-6697-1

    Article  CAS  Google Scholar 

  28. Zheng K, Chen L, Li Y, Cui P (2004) Preparation and thermal properties of silica-graft acrylonitrile-butadiene-styrene nanocomposites. Polym Eng Sci 44:1077–1082. doi:10.1002/pen.20100

    Article  CAS  Google Scholar 

  29. Bugnicourt E, Galy J, Gérard JF, Barthel H (2007) Effect of sub-micron silica fillers on the mechanical performances of epoxy-based composites. Polymer 48:1596–1605. doi:10.1016/j.polymer.2007.01.053

    Article  CAS  Google Scholar 

  30. Fleming MS, Mandal TK, Walt DR (2001) Nanosphere-microsphere assembly: methods for core-shell materials preparation. Chem Mater 13:2210–2216. doi:10.1021/cm010168z

    Article  CAS  Google Scholar 

  31. Wen F, Zhang W, Wei G, Wang Y, Zhang J, Zhang M, Shi L (2008) Synthesis of noble metal nanoparticles embedded in the shell layer of core-shell poly (styrene-co-4-vinylpyridine) micospheres and their application in catalysis. Chem Mater 20:2144–2150. doi:10.1021/cm703378c

    Article  CAS  Google Scholar 

  32. Zhu A, Shi Z, Cai A, Zhao F, Liao T (2008) Synthesis of core-shell PMMA-SiO2 nanoparticles with suspension-dispersion-polymerization in an aqueous system and its effect on mechanical properties of PVC composites. Polym Test 27:540–547. doi:10.1016/j.polymertesting.2007.11.005

    Article  CAS  Google Scholar 

  33. Zhang SW, Zhou SX, Weng YM, Wu LM (2005) Synthesis of SiO2/polystyrene nanocomposite particles via miniemulsion polymerization. Langmuir 21:2124–2128. doi:10.1021/la047652b

    Article  CAS  Google Scholar 

  34. Shen F, Wang Y, Yuan X, Guo W, Wu C (2008) Interfacial coordination reaction in copper sulfate particles filled styrene-acrylonitrile copolymer composites. J Macromol Sci Part B Phys 47:76–86. doi:10.1080/15568310701744166

    Article  CAS  Google Scholar 

  35. Yuan X, Shen F, Wu G, Wu C (2007) Effects of acrylonitrile content on the coordination crosslinking reaction between acrylonitrile-butadiene rubber and copper sulfate. Mater Sci Eng A 459:82–85. doi:10.1016/j.msea.2007.01.036

    Article  Google Scholar 

  36. Yuan X, Shen F, Wu G, Wu C (2007) Novel in situ coordination copper sulfate/acrylonitrile-butadiene rubber composite. J Polym Sci Part B Polym Phys 45:571–576. doi:10.1002/polb.21087

    Article  CAS  Google Scholar 

  37. Mou H, Xue P, Shi Q, Guo W, Wu C, Fu X (2012) A direct method for the vulcanization of acrylate rubber through in situ coordination crosslinking. Polym J 44:1064–1069. doi:10.1038/pj.2012.59

    Article  CAS  Google Scholar 

  38. Brostow W, Lobland HEH (2016) Materials: introduction and applications. Wiley, New York

    Google Scholar 

  39. Kuram E, Sarac L, Ozcelik B, Yilmaz F (2014) Mechanical, chemical, thermal, and rheological properties of recycled PA6/ABS binary and PA6/PA66/ABS ternary blends. J Appl Polym Sci 131:9603–9610. doi:10.1002/app.40810

    Article  Google Scholar 

  40. Jo MY, Ryu YJ, Ko JH, Yoon JS (2012) Effects of compatibilizers on the mechanical properties of ABS/PLA composites. J Appl Polym Sci 125:E231–E238. doi:10.1002/app.36732

    Article  CAS  Google Scholar 

  41. Nazari T, Garmabi H, Arefazar A (2012) Effect of clay modification on the morphology and the mechanical/physical properties of ABS/PMMA blends. J Appl Polym Sci 126:1637–1649. doi:10.1002/app.36953

    Article  CAS  Google Scholar 

  42. Li Q, Liu S, Li S, Guo W, Wu C (2016) Preparation of micro-size flake silver powder by planetary ball mill. J Mater Sci Mater Electron 27:452–457. doi:10.1007/s10854-015-3773-x

    Article  CAS  Google Scholar 

  43. Li S, Liu S, Fu Z, Li Q, Wu C, Guo W (2016) Surface modification and characterization of carbon black by sodium lignosulphonate. Surf Interface Anal. doi:10.1002/sia.6115

    Google Scholar 

  44. Han J, Lu H, Zhang L, Zhang J, Feng S (2013) Coordination cross-linking gadolinium salt/acrylonitrile-butadiene rubber composite: its preparation, characterization, and functional properties. Polym Compos 34:1013–1019. doi:10.1002/pc.22495

    Article  CAS  Google Scholar 

  45. Mou H, Shen F, Shi Q, Liu Y, Wu C, Guo W (2012) A novel nitrile butadiene rubber/zinc chloride composite: coordination reaction and miscibility. Eur Polym J 48:857–865. doi:10.1016/j.eurpolymj.2012.02.004

    Article  CAS  Google Scholar 

  46. Stone A (1963) g tensors of aromatic hydrocarbons. J Mol Phys 6:509–515. doi:10.1080/00268976300100571

    Article  CAS  Google Scholar 

  47. Abdel-hamid MI, Bakr NA (1995) Optical and electrical conductivity investigations of Fe3+-(acrylonitrile-butadiene-styrene) terpolymer complex systems. J Mater Res 10:2653–2658. doi:10.1557/JMR.1995.2653

    Article  Google Scholar 

  48. Kalogeras IM, Hagg Lobland HE (2012) The nature of the glassy state: structure and glass transitions. J Mater Educ 34:69–94

    CAS  Google Scholar 

  49. Brostow W, Hagg Lobland HE, Narkis M (2011) The concept of materials brittleness and its applications. Polym Bull 67:1697. doi:10.1007/s00289-011-0573-1

    Article  CAS  Google Scholar 

  50. Brostow W, Hagg Lobland HE (2016) Survey of relations of chemical constituents in polymer-based materials with brittleness and its associated properties. Chem Chem Technol 10:595–600. doi:10.23939/chcht10.04si.595

    Article  Google Scholar 

  51. Ohno N, Wang HJ, Yan H, Tosnima N (2001) Novel synthesis, characterization, and physical properties of self-doped sulfonated polyaniline by copolymerization between p-aminodiphenylamine and o-aminobenzenesulfonic acid. Polym J 33:165–171. doi:10.1295/polymj.33.165

    Article  CAS  Google Scholar 

  52. Nishi Y, Kunikyo N, Kanda M, Lebrun L, Guyomar D (2010) Impact value of high electric conductive ABS composites with copper powder dispersion prepared by solution-cast method. Mater Trans 51:165–170. doi:10.2320/matertrans.M2009171

    Article  CAS  Google Scholar 

  53. Garcia A, Berthelot T, Viel P, Mesnage A, Jégou P, Nekelson F, Roussel S, Palacin S (2010) ABS polymer electroless plating through a one-step poly(acrylic acid) covalent grafting. Appl Mater Interfaces 2:1177–1183. doi:10.1021/am1000163

    Article  CAS  Google Scholar 

  54. Hayez V, Franquet A, Hubin A, Terryn H (2004) XPS study of the atmospheric corrosion of copper alloys of archaeological interest. Surf Inerface Anal 36:876–879. doi:10.1002/sia.1790

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiuying Li or Chifei Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Z., Mao, Y., Li, S. et al. Preparation and characterization of ABS and copper (II) sulfate coordination composites by planetary ball mill. Polym. Bull. 75, 453–468 (2018). https://doi.org/10.1007/s00289-017-2042-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2042-y

Keywords

Navigation