Skip to main content
Log in

Cellulosic materials as natural fillers in starch-containing matrix-based films: a review

  • Review
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this work, the different cellulosic materials, namely cellulose and lignin are analyzed. In addition, the starch-containing matrices (isolated starch and flour) reinforced with cellulosic materials to be used in packaging applications are described. Many efforts have been exerted to develop biopackaging based on renewable polymers, since these could reduce the environmental impact caused by petrochemical resources. Special attention has had the starch as macromolecule for forming biodegradable packaging. For these reasons, shall also be subject of this review the effect of each type of cellulosic material on the starch-containing matrix-based thermoplastic materials. In this manner, this review contains a description of films based on starch-containing matrices and biocomposites, and then has a review of cellulosic material-based fillers. In the same way, this review contains an analysis of the works carried out on starch-containing matrices reinforced with cellulose and lignin. Finally, the manufacturing processes of starch/cellulose composites are provided as well as the conclusions and the outlook for future works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

CNCs:

Cellulose nanocrystals

CNFs:

Cellulose nanofibers

CNPs:

Cellulose nanoparticles

REx:

Reactive extrusion

T g :

Glass transition temperature

TPS:

Thermoplastic starch

References

  1. Davis G, Song JH (2006) Biodegradable packaging based on raw materials from crops and their impact on waste management. Ind Crop Prod 23(2):147–161

    Article  CAS  Google Scholar 

  2. Marsh K, Bugusu B (2007) Food packaging—roles, materials, and environmental issues. J Food Sci 72(3):R39–R55

    Article  CAS  Google Scholar 

  3. Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23(7):1273–1335

    Article  CAS  Google Scholar 

  4. Krochta JM, Mulder-Johnston DE (1997) Edible and biodegradable polymer films: challenges and opportunities. Food Technol Chicago

  5. Gutiérrez TJ, Guzmán R, Medina Jaramillo C, Famá L (2015) Effect of beet flour on films made from biological macromolecules: native and modified plantain flour. Int J Biol Macromol 82:395–403

    Article  CAS  Google Scholar 

  6. Gutiérrez TJ, Suniaga J, Monsalve A, García NL (2016) Influence of beet flour on the relationship surface-properties of edible and intelligent films made from native and modified plantain flour. Food Hydrocolloid 54:234–244

    Article  CAS  Google Scholar 

  7. Pelissari FM, Andrade-Mahecha MM, do Amaral Sobral PJ, Menegalli FC (2013) Comparative study on the properties of flour and starch films of plantain bananas (Musa paradisiaca). Food Hydrocolloid 30(2):681–690

    Article  CAS  Google Scholar 

  8. Mathew AP, Dufresne A (2002) Plasticized waxy maize starch: effect of polyols and relative humidity on material properties. Biomacromolecules 3(5):1101–1108

    Article  CAS  Google Scholar 

  9. Shen L, Haufe J, Patel MK (2009) Product overview and market projection of emerging bio-based plastics PRO-BIP 2009. Report for European Polysaccharide Network of Excellence (EPNOE) and European Bioplastics, 243

  10. Gutiérrez TJ, Morales NJ, Tapia MS, Pérez E, Famá L (2015) Corn starch 80: 20 “waxy”: regular, “native” and phosphated, as bio-matrixes for edible films. Procedia Mater Sci 8:304–310

    Article  CAS  Google Scholar 

  11. Gutiérrez TJ, Morales NJ, Pérez E, Tapia MS, Famá L (2015) Physico-chemical properties of edible films derived from native and phosphated cush-cush yam and cassava starches. Food Packag Shelf Life 3:1–8

    Article  Google Scholar 

  12. Gutiérrez TJ, Tapia MS, Pérez E, Famá L (2015) Structural and mechanical properties of edible films made from native and modified cush-cush yam and cassava starch. Food Hydrocoll 45:211–217

    Article  CAS  Google Scholar 

  13. Gutiérrez TJ, Tapia MS, Pérez E, Famá L (2015) Edible films based on native and phosphated 80: 20 waxy: normal corn starch. Starch-Stärke 67(1–2):90–97

    Article  CAS  Google Scholar 

  14. Bordes P, Pollet E, Bourbigot S, Averous L (2008) Structure and properties of PHA/Clay nano-biocomposites prepared by melt Iintercalation. Macromol Chem Phys 209(14):1473–1484

    Article  CAS  Google Scholar 

  15. Gonzalez JS, Ludueña LN, Ponce A, Alvarez VA (2014) Poly (vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings. Mater Sci Eng, C 34:54–61

    Article  CAS  Google Scholar 

  16. Ollier RP, Perez CJ, Alvarez VA (2013) Preparation and characterization of micro and nanocomposites based on poly (vinyl alcohol) for packaging applications. J Mater Sci 48(20):7088–7096

    Article  CAS  Google Scholar 

  17. Ludueña LN, Vecchio A, Stefani PM, Alvarez VA (2013) Extraction of cellulose nanowhiskers from natural fibers and agricultural byproducts. Fiber Polym 14(7):1118–1127

    Article  CAS  Google Scholar 

  18. Hoyos CG, Alvarez VA, Rojo PG, Vázquez A (2012) Fique fibers: enhancement of the tensile strength of alkali treated fibers during tensile load application. Fiber Polym 13(5):632–640

    Article  CAS  Google Scholar 

  19. Ludueña L, Vázquez A, Alvarez V (2012) Effect of lignocellulosic filler type and content on the behavior of polycaprolactone based eco-composites for packaging applications. Carbohyd Polym 87(1):411–421

    Article  CAS  Google Scholar 

  20. Haque MMU, Alvarez V, Paci M, Pracella M (2011) Processing, compatibilization and properties of ternary composites of Mater-Bi with polyolefins and hemp fibres. Compos Part A-Appl S 42(12):2060–2069

    Article  CAS  Google Scholar 

  21. Pracella M, Haque MMU, Alvarez V (2010) Functionalization, compatibilization and properties of polyolefin composites with natural fibers. Polymers 2(4):554–574

    Article  CAS  Google Scholar 

  22. Pracella M, Haque M, Alvarez V (2010) Compatibilization and properties of EVA copolymers containing surface-functionalized cellulose microfibers. Macromol Mater Eng 295(10):949–957

    Article  CAS  Google Scholar 

  23. Vázquez A, Alvarez VA (2009) Starch–cellulose fiber composites. Biodegradable polymer blends and composites from renewable resources, pp 239–286

  24. Stefani PM, Perez CJ, Alvarez VA, Vazquez A (2008) Microcellulose fibers-filled epoxy foams. J Appl Polym Sci 109(2):1009–1013

    Article  CAS  Google Scholar 

  25. Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15(1):149–159

    Article  CAS  Google Scholar 

  26. Alvarez V, Mondragon I, Vazquez A (2007) Influence of chemical treatments on the interfacial adhesion between sisal fibre and different biodegradable polymers. Compos Interface 14(7–9):605–616

    Article  CAS  Google Scholar 

  27. Alvarez VA, Ruseckaite RA, Vazquez A (2007) Aqueous degradation of MATER BI Y—Sisal fibers biocomposites. J Thermoplast Compos 20(3):291–303

    Article  CAS  Google Scholar 

  28. Moran J, Alvarez V, Petrucci R, Kenny J, Vazquez A (2007) Mechanical properties of polypropylene composites based on natural fibers subjected to multiple extrusion cycles. J Appl Polym Sci 103(1):228–237

    Article  CAS  Google Scholar 

  29. Alvarez VA, Ruseckaite RA, Vazquez A (2006) Degradation of sisal fibre/Mater Bi-Y biocomposites buried in soil. Polym Degrad Stabil 91(12):3156–3162

    Article  CAS  Google Scholar 

  30. Alvarez VA, Vázquez A (2006) Influence of fiber chemical modification procedure on the mechanical properties and water absorption of MaterBi-Y/sisal fiber composites. Compos Part A-Appl S 37(10):1672–1680

    Article  CAS  Google Scholar 

  31. De La Osa O, Alvarez VA, Fraga AN, Mammone EM, Vázquez A (2006) Loss of mechanical properties by water absorption of vinyl-ester reinforced with glass fiber. J Reinf Plast Comp 25(2):215–221

    Article  CAS  Google Scholar 

  32. Alvarez V, Vazquez A, Bernal C (2006) Effect of microstructure on the tensile and fracture properties of sisal fiber/starch-based composites. J Compos Mater 40(1):21–35

    Article  CAS  Google Scholar 

  33. Rodriguez E, Alvarez VA, Moran J, Moreno S, Petrucci R, Kenny JM, Vazquez A (2006) Mechanical properties evaluation of a recycled flax fiber-reinforced vinyl ester. J Compos Mater 40(3):245–256

    Article  CAS  Google Scholar 

  34. Alvarez V, Vázquez A, Bernal C (2005) Fracture behavior of sisal fiber–reinforced starch-based composites. Polym Composite 26(3):316–323

    Article  CAS  Google Scholar 

  35. Alvarez VA, Terenzi A, Kenny JM, Vazquez A (2004) Melt rheological behavior of starch-based matrix composites reinforced with short sisal fibers. Polym Eng Sci 44(10):1907–1914

    Article  CAS  Google Scholar 

  36. Alvarez VA, Vázquez A (2004) Thermal degradation of cellulose derivatives/starch blends and sisal fibre biocomposites. Polym Degrad Stabil 84(1):13–21

    Article  CAS  Google Scholar 

  37. Alvarez VA, Fraga AN, Vazquez A (2004) Effects of the moisture and fiber content on the mechanical properties of biodegradable polymer-sisal fiber biocomposites. J Appl Polym Sci 91(6):4007–4016

    Article  CAS  Google Scholar 

  38. Alvarez VA, Kenny JM, Vázquez A (2004) Creep behavior of biocomposites based on sisal fiber reinforced cellulose derivatives/starch blends. Polym Composite 25(3):280–288

    Article  CAS  Google Scholar 

  39. Alvarez VA, Ruscekaite RA, Vazquez A (2003) Mechanical properties and water absorption behavior of composites made from a biodegradable matrix and alkaline-treated sisal fibers. J Compos Mater 37(17):1575–1588

    Article  CAS  Google Scholar 

  40. Alvarez V, Bernal CR, Frontini PM, Vazquez A (2003) The influence of matrix chemical structure on the mode I and II interlaminar fracture toughness of glass-fiber/epoxy composites. Polym Composite 24(1):140–148

    Article  CAS  Google Scholar 

  41. Fraga AN, Alvarez VA, Vazquez A, De La Osa O (2003) Relationship between dynamic mechanical properties and water absorption of unsaturated polyester and vinyl ester glass fiber composites. J Compos Mater 37(17):1553–1574

    Article  CAS  Google Scholar 

  42. Gwon JG, Cho HJ, Chun SJ, Lee S, Wu Q, Li MC, Lee SY (2016) Mechanical and thermal properties of toluene diisocyanate-modified cellulose nanocrystal nanocomposites using semi-crystalline poly (lactic acid) as a base matrix. RSC Adv 6(77):73879–73886

    Article  CAS  Google Scholar 

  43. Huang S, Zhou L, Li MC, Wu Q, Kojima Y, Zhou D (2016) Preparation and properties of electrospun poly (vinyl pyrrolidone)/cellulose nanocrystal/silver nanoparticle composite fibers. Materials 9(7):523

    Article  Google Scholar 

  44. Spence K, Habibi Y, Dufresne A (2011) In: Cellulose fibers: bio-and nano-polymer composites. Springer, Berlin, pp 179–213

  45. Khalil HA, Bhat AH, Bakar AA, Tahir PM, Zaidul ISM, Jawaid M (2015) In: Handbook of Polymer Nanocomposites. Processing, Performance and Application, Springer, Berlin, pp 475–511

  46. Shahabi-Ghahafarrokhi I, Khodaiyan F, Mousavi M, Yousefi H (2015) Preparation and characterization of nanocellulose from beer industrial residues using acid hydrolysis/ultrasound. Fiber Polym 16(3):529–536

    Article  CAS  Google Scholar 

  47. Akil H, Omar MF, Mazuki AAM, Safiee SZAM, Ishak ZAM, Bakar AA (2011) Kenaf fiber reinforced composites: a review. Mater Design 32(8):4107–4121

    Article  CAS  Google Scholar 

  48. Singha AS, Thakur VK (2009) Physical, chemical and mechanical properties of Hibiscus sabdariffa fiber/polymer composite. Int J Polym Mater 58(4):217–228

    Article  CAS  Google Scholar 

  49. Dufresne A, Medeiros ES, Orts WJ (2010) In: Starch: characterization, properties, and applications, Taylor and Francis Group, LLC Boca Raton, pp 250–252

  50. Thakur VK, Thakur MK (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohyd Polym 109:102–117

    Article  CAS  Google Scholar 

  51. Sjöström E (1981) Wood chemistry: fundamentals and applications. Academic, New York

    Google Scholar 

  52. Whistler RL, Richards EL (1970) The Carbohydrates 2:447–469

    Google Scholar 

  53. Doherty WO, Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: lignin polymers. Ind Crop Prod 33(2):259–276

    Article  CAS  Google Scholar 

  54. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Edit 44(22):3358–3393

    Article  CAS  Google Scholar 

  55. Li MC, Wu Q, Song K, Lee S, Qing Y, Wu Y (2015) Cellulose nanoparticles: structure–morphology–rheology relationships. ACS Sustain Chem Eng 3(5):821–832

    Article  CAS  Google Scholar 

  56. Zhou L, He H, Li MC, Song K, Cheng HN, Wu Q (2016) Morphological influence of cellulose nanoparticles (CNs) from cottonseed hulls on rheological properties of polyvinyl alcohol/CN suspensions. Carbohyd Polym 153:445–454

    Article  CAS  Google Scholar 

  57. Rosa SM, Rehman N, de Miranda MIG, Nachtigall SM, Bica CI (2012) Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohyd Polym 87(2):1131–1138

    Article  CAS  Google Scholar 

  58. Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG (2012) Rheology of nanocrystalline cellulose aqueous suspensions. Langmuir 28(49):17124–17133

    Article  CAS  Google Scholar 

  59. Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG (2013) Influence of degree of sulfation on the rheology of cellulose nanocrystal suspensions. Rheol Acta 52(8–9):741–751

    Article  CAS  Google Scholar 

  60. Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG (2014) Ionic strength effects on the microstructure and shear rheology of cellulose nanocrystal suspensions. Cellulose 21(5):3347–3359

    Article  CAS  Google Scholar 

  61. Thakur VK, Singha AS (2013) Biomass-based Biocomposites, pp 386, Smithers Rapra, ISBN 978147359803

  62. Thakur VK (2013) Green composites from natural resources. CRC Press Taylor & Francis, p 419, ISBN, 9781466570696

  63. Sarkanen KV, Ludwig CH (1971) Lignins-occurence, formation, structure and reactions, vol 1. Wiley Interscience, New York

    Google Scholar 

  64. Meshitsuka G, Isogai A (1996) Chemical structures of cellulose, hemicelluloses and lignin, In: Chemical modification of lignocellulosic materials. Editor D-NS. Hon. Marcel Dekker Inc. New York, NY

  65. Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2(5):1072–1092

    Article  CAS  Google Scholar 

  66. Nordström Y, Norberg I, Sjöholm E, Drougge R (2013) A new softening agent for melt spinning of softwood kraft lignin. J Appl Polym Sci 129(3):1274–1279

    Article  CAS  Google Scholar 

  67. George J, Sreekala MS, Thomas S (2001) A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym Eng Sci 41(9):1471–1485

    Article  CAS  Google Scholar 

  68. Bogoeva-Gaceva G, Avella M, Malinconico M, Buzarovska A, Grozdanov A, Gentile G, Errico ME (2007) Natural fiber eco-composites. Polym Composite 28(1):98–107

    Article  CAS  Google Scholar 

  69. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33

    Article  CAS  Google Scholar 

  70. Erakovic S, Veljovic D, Diouf PN, Stevanovic T, Mitric M, Janackovic D, Matic IZ, Juranic ZD, Miskovic-Stankovic V (2012) The effect of lignin on the structure and characteristics of composite coatings electrodeposited on titanium. Prog Org Coat 75(4):275–283

    Article  CAS  Google Scholar 

  71. Singha AS, Thakur VK (2009) Synthesis, characterization and study of pine needles reinforced polymer matrix based composites. J Reinf Plast Comp 29(5):700–709

    Article  CAS  Google Scholar 

  72. Singha AS, Thakur VK (2010) Mechanical, morphological, and thermal characterization of compression-molded polymer biocomposites. Int J Polym Anal Ch 15(2):87–97

    Article  CAS  Google Scholar 

  73. Pinkert A, Goeke DF, Marsh KN, Pang S (2011) Extracting wood lignin without dissolving or degrading cellulose: investigations on the use of food additive-derived ionic liquids. Green Chem 13(11):3124–3136

    Article  CAS  Google Scholar 

  74. Bertini F, Canetti M, Cacciamani A, Elegir G, Orlandi M, Zoia L (2012) Effect of ligno-derivatives on thermal properties and degradation behavior of poly (3-hydroxybutyrate)-based biocomposites. Polym Degrad Stabil 97(10):1979–1987

    Article  CAS  Google Scholar 

  75. Uraki Y, Sugiyama Y, Koda K, Kubo S, Kishimoto T, Kadla JF (2012) Thermal mobility of β-O-4-type artificial lignin. Biomacromolecules 13(3):867–872

    Article  CAS  Google Scholar 

  76. Dufresne A (2010) In: Encyclopedia of nanoscience and nanotechnology, 21:219–250

  77. Woodcock C, Sarko A (1980) Packing analysis of carbohydrates and polysaccharides. 11. Molecular and crystal structure of native ramie cellulose. Macromolecules 13(5):1183–1187

    Article  CAS  Google Scholar 

  78. Marchessault RH, Sundararajan PR (1983) In: The polysaccharides. Aspinall GO (ed). Academic, New York

  79. O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4(3):173–207

    Article  Google Scholar 

  80. Ashori A, Babaee M, Jonoobi M, Hamzeh Y (2014) Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion. Carbohyd Polym 102:369–375

    Article  CAS  Google Scholar 

  81. Babaee M, Jonoobi M, Hamzeh Y, Ashori A (2015) Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers. Carbohyd Polym 132:1–8

    Article  CAS  Google Scholar 

  82. Bendahou A, Kaddami H, Dufresne A (2010) Investigation on the effect of cellulosic nanoparticles’ morphology on the properties of natural rubber based nanocomposites. Eur Polym J 46(4):609–620

    Article  CAS  Google Scholar 

  83. Khan A, Huq T, Khan RA, Riedl B, Lacroix M (2014) Nanocellulose-based composites and bioactive agents for food packaging. Crit Rev Food Sci 54(2):163–174

    Article  CAS  Google Scholar 

  84. Avérous L (2004) Biodegradable multiphase systems based on plasticized starch: a review. J Macromol Sci C 44(3):231–274

    Article  CAS  Google Scholar 

  85. Zhao R, Torley P, Halley PJ (2008) Emerging biodegradable materials: starch-and protein-based bio-nanocomposites. J Mater Sci 43(9):3058–3071

    Article  CAS  Google Scholar 

  86. Alemdar A, Sain M (2008) Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos Sci Technol 68(2):557–565

    Article  CAS  Google Scholar 

  87. Lu Y, Weng L, Cao X (2006) Morphological, thermal and mechanical properties of ramie crystallites—reinforced plasticized starch biocomposites. Carbohyd Polym 63(2):198–204

    Article  CAS  Google Scholar 

  88. Orts WJ, Shey J, Imam SH, Glenn GM, Guttman ME, Revol JF (2005) Application of cellulose microfibrils in polymer nanocomposites. J Polym Environ 13(4):301–306

    Article  CAS  Google Scholar 

  89. Lu Y, Weng L, Cao X (2005) Biocomposites of plasticized starch reinforced with cellulose crystallites from cottonseed linter. Macromol Biosci 5(11):1101–1107

    Article  CAS  Google Scholar 

  90. Rodney J, Sahari J, Kamal M, Shah M, Sapuan SM (2015) Thermochemical and mechanical properties of tea tree (Melaleuca alternifolia) fibre reinforced tapioca starch composites. e-Polymers 15(6):401–409

    Article  CAS  Google Scholar 

  91. Anglès MN, Dufresne A (2000) Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules 33(22):8344–8353

    Article  Google Scholar 

  92. Anglès MN, Dufresne A (2001) Plasticized starch/tunicin whiskers nanocomposite materials. 2. Mechanical behavior. Macromolecules 34(9):2921–2931

    Article  CAS  Google Scholar 

  93. Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch–cellulose microfibril composites. J Appl Polym Sci 76(14):2080–2092

    Article  CAS  Google Scholar 

  94. Sonkaew P, Sane A, Suppakul P (2012) Antioxidant activities of curcumin and ascorbyl dipalmitate nanoparticles and their activities after incorporation into cellulose-based packaging films. J Agr Food Chem 60(21):5388–5399

    Article  CAS  Google Scholar 

  95. Dufresne A (2008) In: Monomers, polymers and composites from renewable resources, pp 401–418

  96. Weeton JW, Peters DM, Thomas KL (1987) In: Engineers´ guide to composite materials. American Society for metals, Metals Park, Ohio

  97. Kokta BV, Raj RG, Daneault C (1989) Use of wood flour as filler in polypropylene: studies on mechanical properties. Polym Plast Technol 28(3):247–259

    Article  CAS  Google Scholar 

  98. Bumbudsanpharoke N, Choi J, Park I, Ko S (2015) J Nanomater, pp 1–9

  99. Kvien I, Sugiyama J, Votrubec M, Oksman K (2007) Characterization of starch based nanocomposites. J Mater Sci 42(19):8163–8171

    Article  CAS  Google Scholar 

  100. Dufresne A, Dupeyre D, Paillet M (2003) Lignocellulosic flour-reinforced poly (hydroxybutyrate-co-valerate) composites. J Appl Polym Sci 87(8):1302–1315

    Article  CAS  Google Scholar 

  101. Reinsch VE, Kelley SS (1997) Crystallization of poly (hydroxybutrate-co-hydroxyvalerate) in wood fiber-reinforced composites. J Appl Polym Sci 64(9):1785–1796

    Article  CAS  Google Scholar 

  102. Luo S, Netravali AN (1999) Mechanical and thermal properties of environment-friendly “green” composites made from pineapple leaf fibers and poly (hydroxybutyrate-co-valerate) resin. Polym Composite 20(3):367–378

    Article  CAS  Google Scholar 

  103. Kalia S, Dufresne A, Cherian BM, Kaith BS, Avérous L, Njuguna J, Nassiopoulos E (2011) Cellulose-based bio-and nanocomposites: a review. Int J Polym Sci

  104. Raquez JM, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38(10):1504–1542

    Article  CAS  Google Scholar 

  105. Hasani M, Cranston ED, Westman G, Gray DG (2008) Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4(11):2238–2244

    Article  CAS  Google Scholar 

  106. Peng BL, Dhar N, Liu HL, Tam KC (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89(5):1191–1206

    Article  CAS  Google Scholar 

  107. Morandi G, Heath L, Thielemans W (2009) Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP). Langmuir 25(14):8280–8286

    Article  CAS  Google Scholar 

  108. Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24(2):221–274

    Article  CAS  Google Scholar 

  109. Trejo-O’reilly JA, Cavaille JY, Paillet M, Gandini A, Herrera-Franco P, Cauich J (2000) Interfacial properties of regenerated cellulose fiber/polystyrene composite materials. Effect of the coupling agent’s structure on the micromechanical behavior. Polym Composite 21(1):65–71

  110. Angellier H, Molina-Boisseau S, Belgacem MN, Dufresne A (2005) Surface chemical modification of waxy maize starch nanocrystals. Langmuir 21(6):2425–2433

    Article  CAS  Google Scholar 

  111. Lu T, Jiang M, Jiang Z, Hui D, Wang Z, Zhou Z (2013) Effect of surface modification of bamboo cellulose fibers on mechanical properties of cellulose/epoxy composites. Compos Part B-Eng 51:28–34

    Article  CAS  Google Scholar 

  112. Miao C, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20(5):2221–2262

    Article  CAS  Google Scholar 

  113. Bledzki AK, Mamun AA, Volk J (2010) Barley husk and coconut shell reinforced polypropylene composites: the effect of fibre physical, chemical and surface properties. Compos Sci Technol 70(5):840–846

    Article  CAS  Google Scholar 

  114. Hietala M, Mathew AP, Oksman K (2013) Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. Eur Polym J 49(4):950–956

    Article  CAS  Google Scholar 

  115. Dufresne A (2000) Dynamic mechanical analysis of the interphase in bacterial polyester/cellulose whiskers natural composites. Compos Interface 7(1):53–67

    Article  CAS  Google Scholar 

  116. Dong XM, Kimura T, Revol JF, Gray DG (1996) Effects of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12(8):2076–2082

    Article  CAS  Google Scholar 

  117. Revol JF, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14(3):170–172

    Article  CAS  Google Scholar 

  118. Fleming K, Gray DG, Matthews S (2001) Cellulose crystallites. Chem-Eur J 7(9):1831–1836

    CAS  Google Scholar 

  119. Marchessault RH, Morehead FF, Walter NM (1959) Liquid crystal systems from fibrillar polysaccharides. Nature 184:632–633

    Article  CAS  Google Scholar 

  120. Onsager L (1949) The effects of shape on the interaction of colloidal particles. Ann Ny Acad Sci 51(4):627–659

    Article  CAS  Google Scholar 

  121. Stroobants A, Lekkerkerker HNW, Odijk T (1986) Effect of electrostatic interaction on the liquid crystal phase transition in solutions of rodlike polyelectrolytes. Macromolecules 19(8):2232–2238

    Article  CAS  Google Scholar 

  122. Speranza A, Sollich P (2002) Simplified Onsager theory for isotropic–nematic phase equilibria of length polydisperse hard rods. J Chem Phys 117(11):5421–5436

    Article  CAS  Google Scholar 

  123. Dong XM, Gray DG (1997) Effect of counterions on ordered phase formation in suspensions of charged rodlike cellulose crystallites. Langmuir 13(8):2404–2409

    Article  CAS  Google Scholar 

  124. Bercea M, Navard P (2000) Shear dynamics of aqueous suspensions of cellulose whiskers. Macromolecules 33(16):6011–6016

    Article  CAS  Google Scholar 

  125. Sugiyama J, Chanzy H, Maret G (1992) Orientation of cellulose microcrystals by strong magnetic fields. Macromolecules 25(16):4232–4234

    Article  CAS  Google Scholar 

  126. Yoshiharu N, Shigenori K, Masahisa W, Takeshi O (1997) Cellulose microcrystal film of high uniaxial orientation. Macromolecules 30(20):6395–6397

    Article  CAS  Google Scholar 

  127. Revol JF, Godbout L, Dong XM, Gray DG, Chanzy H, Maret G (1994) Chiral nematic suspensions of cellulose crystallites; phase separation and magnetic field orientation. Liq Cryst 16(1):127–134

    Article  CAS  Google Scholar 

  128. Kimura F, Kimura T, Tamura M, Hirai A, Ikuno M, Horii F (2005) Magnetic alignment of the chiral nematic phase of a cellulose microfibril suspension. Langmuir 21(5):2034–2037

    Article  CAS  Google Scholar 

  129. Revol JF, Godbout L, Gray DG (1998) PPR 1331 report

  130. Revol JF, Godbout L, Gray DG US5629055, Washington, DC: U.S. Government Printing Office

  131. Hooshmand S, Aitomäki Y, Norberg N, Mathew AP, Oksman K (2015) Dry-Spun single-filament fibers comprising solely cellulose nanofibers from bioresidue. ACS Appl Mater Interfaces 7(23):13022–13028

    Article  CAS  Google Scholar 

  132. Valadez-Gonzalez A, Cervantes-Uc JM, Olayo RJIP, Herrera-Franco PJ (1999) Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites. Compos Part B-Eng 30(3):309–320

    Article  Google Scholar 

  133. Li MC, Wu Q, Song K, Cheng HN, Suzuki S, Lei T (2016) Chitin nanofibers as reinforcing and antimicrobial agents in carboxymethyl cellulose films: influence of partial deacetylation. ACS Sustainable Chem Eng 4(8):4385–4395

    Article  CAS  Google Scholar 

  134. Angles MN, Salvadó J, Dufresne A (1999) Steam-exploded residual softwood-filled polypropylene composites. J Appl Polym Sci 74(8):1962–1977

    Article  CAS  Google Scholar 

  135. Faria H, Cordeiro N, Belgacem MN, Dufresne A (2006) Dwarf cavendish as a source of natural fibers in poly (propylene)-based composites. Macromol Mater Eng 291(1):16–26

    Article  CAS  Google Scholar 

  136. Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15(1):25–33

    Article  CAS  Google Scholar 

  137. Juntaro J, Pommet M, Mantalaris A, Shaffer M, Bismarck A (2007) Nanocellulose enhanced interfaces in truly green unidirectional fibre reinforced composites. Compos Interfaces 14:753–762

    Article  CAS  Google Scholar 

  138. Juntaro J, Pommet M, Kalinka G, Mantalaris A, Shaffer MSP, Bismarck A (2008) Creating hierarchical structures in renewable composites by attaching bacterial cellulose onto sisal fibers. Adv Mater 20:3122–3126

    Article  CAS  Google Scholar 

  139. Lu J, Askeland P, Drzal LT (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49:1285–1296

    Article  CAS  Google Scholar 

  140. Çalgeris İ, Çakmakçı E, Ogan A, Kahraman MV, Kayaman-Apohan N (2012) Preparation and drug release properties of lignin–starch biodegradable films. Starch-Stärke 64(5):399–407

    Article  CAS  Google Scholar 

  141. Spiridon I, Teaca CA, Bodirlau R (2011) Preparation and characterization of adipic acid-modified starch microparticles/plasticized starch composite films reinforced by lignin. J Mater Sci 46(10):3241–3251

    Article  CAS  Google Scholar 

  142. Sothornvit R, Olsen CW, McHugh TH, Krochta JM (2007) Tensile properties of compression-molded whey protein sheets: determination of molding condition and glycerol-content effects and comparison with solution-cast films. J Food Eng 78(3):855–860

    Article  CAS  Google Scholar 

  143. Thunwall M, Kuthanova V, Boldizar A, Rigdahl M (2008) Film blowing of thermoplastic starch. Carbohyd Polym 71(4):583–590

    Article  CAS  Google Scholar 

  144. Thunwall M, Boldizar A, Rigdahl M (2006) Compression molding and tensile properties of thermoplastic potato starch materials. Biomacromolecules 7(3):981–986

    Article  CAS  Google Scholar 

  145. Flores SK, Costa D, Yamashita F, Gerschenson LN, Grossmann MV (2010) Mixture design for evaluation of potassium sorbate and xanthan gum effect on properties of tapioca starch films obtained by extrusion. Mater Sci Eng, C 30(1):196–202

    Article  CAS  Google Scholar 

  146. Pelissari FM, Yamashita F, Garcia MA, Martino MN, Zaritzky NE, Grossmann MVE (2012) Constrained mixture design applied to the development of cassava starch–chitosan blown films. J Food Eng 108(2):262–267

    Article  CAS  Google Scholar 

  147. Šimkovic I (2013) Unexplored possibilities of all-polysaccharide composites. Carbohyd Polym 95(2):697–715

    Article  CAS  Google Scholar 

  148. Mondragón M, Arroyo K, Romero-Garcia J (2008) Biocomposites of thermoplastic starch with surfactant. Carbohyd Polym 74(2):201–208

    Article  CAS  Google Scholar 

  149. Chakraborty A, Sain M, Kortschot M, Cutler S (2007) Dispersion of wood microfibers in a matrix of thermoplastic starch and starch–polylactic acid blend. J Biobased Mater Bio 1(1):71–77

    Google Scholar 

  150. Takagi H, Asano A (2008) Effects of processing conditions on flexural properties of cellulose nanofiber reinforced “green” composites. Compos Part A-Appl S 39(4):685–689

    Article  CAS  Google Scholar 

  151. Grande CJ, Torres FG, Gomez CM, Troncoso OP, Canet-Ferrer J, Martinez-Pastor J (2008) Morphological characterisation of bacterial cellulose-starch nanocomposites. Polym Polym Compos 16(3):181–186

    CAS  Google Scholar 

  152. Yano H, Nakahara S (2004) Bio-composites produced from plant microfiber bundles with a nanometer unit web-like network. J Mater Sci 39(5):1635–1638

    Article  CAS  Google Scholar 

  153. Psomiadou E, Arvanitoyannis I, Yamamoto N (1996) Edible films made from natural resources; microcrystalline cellulose (MCC), methylcellulose (MC) and corn starch and polyols-Part 2. Carbohyd Polym 31(4):193–204

    Article  CAS  Google Scholar 

  154. Suvorova AI, Tyukova IS, Trufanova EI (2000) Biodegradable starch-based polymeric materials. Russ Chem Rev 69(5):451

    Article  CAS  Google Scholar 

  155. Rodríguez‐Castellanos W, Flores‐Ruiz FJ, Martínez‐Bustos F, Chiñas‐Castillo F, Espinoza‐Beltrán FJ (2015) Nanomechanical properties and thermal stability of recycled cellulose reinforced starch-gelatin polymer composite. J Appl Polym Sci 132(14)

Download references

Acknowledgments

The authors would like to thank the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Postdoctoral fellowship internal PDTS-Resolution 2417), Universidad Nacional de Mar del Plata (UNMdP) for the financial support and Dr. Mirian Carmona-Rodríguez.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomy J. Gutiérrez.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez, T.J., Alvarez, V.A. Cellulosic materials as natural fillers in starch-containing matrix-based films: a review. Polym. Bull. 74, 2401–2430 (2017). https://doi.org/10.1007/s00289-016-1814-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1814-0

Keywords

Navigation