Skip to main content
Log in

Nanocomposites of polypropylene/titanate nanotubes: morphology, nucleation effects of nanoparticles and properties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

High-quality titanate nanotubes (TiNT) were mixed with modified polypropylene (PP*) by a batch melt-mixing procedure. To improve compatibility between the nanofiller and the matrix, polypropylene (PP) was modified by electron beam irradiation. Effects of TiNT nanoparticles on crystallization, mechanical, thermal and rheological properties of the modified polypropylene were studied and compared with the analogous systems filled with commercial micro- (mTiO2) and nano- (nTiO2) titanium dioxide particles. Nucleation effects of the TiO2-based fillers on PP* crystallization were investigated in detail. The microstructure of the PP*/TiNT nanocomposites shows well-dispersed TiNT sparse aggregates (clouds), penetrated by the polymer. A large-scale structure in the nanocomposite melts confirmed also rheology. In comparison to the matrix characteristics, the stiffness and microhardness of the TiNT nanocomposites increase by 27 and 33 %, respectively. The enhancement in mechanical properties demonstrates that the quality titanate nanotubes can be used as an efficient filler in non-polar polymers using the polymers modified by irradiation. In the case of the nanocomposites containing nTiO2-anatase particles, the increase in these mechanical characteristics is lower. The investigated changes in the rate of crystallization indicate a marked nucleation effect of the nanotubes. The crystallization kinetics data, processed by the Avrami equation, suggest 3-dimensional crystal growth in the polypropylene matrix. The observed improvement in mechanical properties of the TiNT nanocomposites is induced not only by the nanofiller reinforcement but also by the changes of supermolecular structure of the polymer matrix due to nucleated crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lagarón JM, Ocio MJ, López-Rubio A (2012) Antimicrobial packaging polymers. In: Lagarón JM, Ocio MJ, López-Rubio A (eds) Antimicrobial polymers, 1st edn. Wiley, Hoboken. doi:10.1002/9781118150887

    Google Scholar 

  2. Cordeiro de Azeredo HM (2012) Antimicrobial activity of nanomaterials for food packaging applications. In: Cioffi N, Rai M (eds) Nano-antimicrobials. Springer, Heidelberg. doi:10.1007/978-3-642-244285

    Google Scholar 

  3. Lin F (2006) Preparation and characterization of polymer TiO2 nanocomposites via in-situ polymerization. Disertation, University of Waterloo, Waterloo

  4. Ma D, Akpalu YA, Li Y, Siegel WR, Schadler LS (2005) Effect of titania nanoparticles on morphology of low density polyethylene. J Polym Sci Part B Polym Phys 43:488–497. doi:10.1002/polb.20341

    Article  CAS  Google Scholar 

  5. Nakayama N, Hayashi T (2007) Preparation and characterization of poly(L-lactic acid/TiO2 nanoparticle nanocomposite films with high transparency and efficient photodegradability. Polym Degrad Stab 92:1255–1264. doi:10.1016/j.polymdegradstab.2007.03.026

    Article  CAS  Google Scholar 

  6. Kubacka A, Cerrada ML, Serrano C, Fernández-García M, Ferrer M, Fernández-García M (2008) Light-driven novel properties of TiO2-modified polypropylene nanocomposite films. J Nanosci Nanotechnol 8:3241–3246. doi:10.1166/jnn.2008.363

    Article  CAS  Google Scholar 

  7. Kubacka A, Ferrer M, Cerrada ML, Serrano C, Sánchez-Chaves M, Fernández-García M, de Andrés A, Riobóo RJJ, Fernández-Martín F, Fernández-García M (2009) Boosting TiO2-anatas antimicrobial activity: polymer-oxide thin films. Appl Catal B 89:441–447. doi:10.1016/j.apcatb.2009.01.002

    Article  CAS  Google Scholar 

  8. Deb B, Kumar V, Druffel TL, Sunkara MK (2009) Functionalizing titania nanoparticle surfaces in a fluidized bed plasma reactor. Nanotechnology 20:465701. doi:10.1088/0957-4484/20/46/465701

    Article  CAS  Google Scholar 

  9. Bahloul W, Bounor-Legaré V, David L, Cassagnau P (2010) Morphology and viscoelasticity of PP/TiO2 nanocomposites prepared by in-situ sol-gel method. J Polym Sci Part B Polym Phys 48:1213–1222. doi:10.1002/polb.22012

    Article  CAS  Google Scholar 

  10. Panaitescu DM, Radovici C, Ghiurea M, Paven H, Iorga DM (2011) Influence of rutile and anatase TiO2 nanoparticles on polyethylene properties. Polym-Plast Techn Eng 50:196–202. doi:10.1080/03602559.2010.531431

    Article  CAS  Google Scholar 

  11. El-Dessouky HM, Lawrence CA (2011) Nanoparticles dispersion in processing functionalised PP/TiO2 nanocomposites: distribution and properties. J Nanopart Res 13:1115–1124. doi:10.1007/s11051-010-0100-6

    Article  CAS  Google Scholar 

  12. Serrano C, Cerrada M, Fernández-García M, Ressia J, Vallés EM (2012) Rheological and structural details of biocidal iPP-TiO2 nanocomposites. Eur Polym J 48:586–596. doi:10.1016/j.eurpolmj.2011.12.012

    Article  CAS  Google Scholar 

  13. De Olyveira GM, Costa LMM, Leso AL, De Souza SF, Cherian BM, De Carvalho AJF, Pessan LA, Narine SS (2012) LDPE/EVA composites for antimicrobial properties. Mol Cryst Liq Cryst 556:168–175. doi:10.1080/15421406.2012.635944

    Article  Google Scholar 

  14. Nevalainen K, Isomäki N, Honkanen M, Suihkonen R, McNally T, Harkin-Jones E, Syrjälä S, Vuorinen J, Järvelä P (2012) Melt-compounded nanocomposites of titanium dioxide atomic-layer-deposition-coated polyamide and polystyrene powders. Polym Advan Technol 23:357–366. doi:10.1002/pat.1879

    Article  CAS  Google Scholar 

  15. Umek P, Huskić M, Škapin SA, Florjančič U, Zupančič B, Emri I, Arčon D (2009) Structural and mechanical properties of polystyrene nanocomposites with 1 D titanate nanostructures prepared by an extrusion process. Polym Compos 30:1318–1325. doi:10.1002/pc.20697

    Article  CAS  Google Scholar 

  16. Ajayan PM, Schadler LS, Braun PV (2003) Nanocompos Sci Technol. Wiley-VCH Verlag, Weinheim

    Book  Google Scholar 

  17. Byrne TM, McCarthy JE, Bent M, Blake R, Gun′ko YK, Horvath E, Konya Z, Kukovecz A, Kiricsi I, Coleman NJ (2007) Chemical functionalisation of titania nanotubes and their utilisation for the fabrication of reinforced polystyrene composites. J Mater Chem 17:2351–2358. doi:10.1039/B612886F

    Article  CAS  Google Scholar 

  18. Králová D, Šlouf M, Klementová M, Kužel R, Kelnar I (2010) Preparation of gram quantities of high-quality titanate nanotubes and their composites with polyamide 6. Mater Chem Phys 124:652–657. doi:10.1016/j.matchemphys.2010.07.029

    Article  Google Scholar 

  19. Dong Y, Gui Z, Hu Y, Wu Y, Jiang S (2011) The influence of titanate nanotube on the improved thermal properties and the smoke suppression in poly(methyl methacrylate). J Hazard Mat 209–210:34–39. doi:10.1016/j.jhazmat.2011.12.048

    Google Scholar 

  20. Li Q, Xiao Ch, Zhang H, Chen F, Fang P, Pan M (2011) Polymer electrolyte membranes containing titanate nanotubes for elevated temperature fuel cells under low relative humidity. J Power Sources 196:8250–8256. doi:10.1016/j.jpowsour.2011.05.082

    Article  CAS  Google Scholar 

  21. Vacková T, Šlouf M, Húng V (2012) Nucleated crystallization in PE, PP, and POM nanocomposites. In: the proceedings of the 15th European Microscopy Congress. Royal Microscopical Society. Manchester

  22. Králová D, Neykova N, Šlouf M (2008) Preparation of titanate nanotubes and their polymer composites. In: Richter S, Schwedt A (eds) EMC 2008, vol 2., Materials ScienceSpringer, Berlin, pp 765–766. doi:10.1007/978-3-540-85226-1_1

    Google Scholar 

  23. Šlouf M, Králová D, Kruliš Z. Nanotrubky na bázi oxidu titaničitého a způsob jejich přípravy (in Czech). CZ 302299, Czech Patent

  24. Dorschner H, Lappan U, Lunkwitz K (1998) Electron facility in polymer research: radiation induced functionalization of polytetrafluoroethylene. Nucl Instr Method Phys Res B 139:495–501

    Article  CAS  Google Scholar 

  25. Jordan ND, Bassett DC, Olley RH, Smith NG (2001) In-depth morphological changes and embrittlement near the wear surface of UHMWPE inserts from uncemented hip systems. J Biomed Mater Res 55:158–163. doi:10.1002/1097-4636(200105

    Article  CAS  Google Scholar 

  26. Slouf M, Synkova H, Baldrian J, Marek A, Kovarova J, Schmidt P, Dorschner H, Stephan M, Gohs U (2008) Structural changes of UHMWPE after e-beam irradiation and thermal treatment. J Biomed Mater Res Part B Appl Biomater 85B:240–251. doi:10.1002/jbm.b.30942

    Article  CAS  Google Scholar 

  27. NiS-Elements Ar (2012) User manual version 4 10 03, Laboratory imaging, Prague. http://www.laboratory-imaging.com

  28. Avrami M (1939) Kinetics of phase change.I. J Chem Phys 7:1103–1112

    Article  CAS  Google Scholar 

  29. Avrami M (1940) Kinetics of phase change. II.Ibid. J Chem Phys 8:212–224

    Article  CAS  Google Scholar 

  30. Avrami M (1941) Kinetics of phase change. III. Ibid. J Chem Phys 9:177–184

    Article  CAS  Google Scholar 

  31. Ziabicki A, Misztal-Faraj B (2005) Applicability of light depolarization technique to crystallization studies. Polymer 46:2395–2403. doi:10.1016/j.polymer.2005.01.021

    Article  CAS  Google Scholar 

  32. Misztal-Faraj B, Sajkiewicz P, Savytskyy H, Bonchyk O, Gradys A, Ziabicki A (2009) Following phase transitions by depolarized light intensity. The experimental setup. Polym Test 28:36–41. doi:10.1016/j.polymertesting.2008.09.012

    Article  CAS  Google Scholar 

  33. Schultz JM (2001) Polymer crystallization. The development of crystalline order in thermoplastic polymer. Oxford University Press, New York

    Google Scholar 

  34. Hazewinkel M (2001) (ed) Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4

  35. Slouf M, Sikora A, Pavlova E, Vlkova H, Baldrian J, Base T, Piorkowska E (2012) Nucleated crystallization of isotactic polypropylene in multilayered sandwich nanocomposites with gold particles. J Appl Polym Sci 125:4338–4346. doi:10.1002/app.36589

    Article  CAS  Google Scholar 

  36. Vacková T, Šlouf M, Nevoralová M, Kaprálková L (2011) Processing-improved properties and morphology of PP/COC blends. J Appl Polym Sci 122:1168–1175. doi:10.1102/app.34258

    Article  Google Scholar 

  37. Van Krevelen DW (1990) Properties of polymers. Elsevier, Amsterdam

    Google Scholar 

  38. Supaphol PJ (2000) Nonisothermal bulk crystallization and subsequent melting behaviour of syndiotactic polypropylenes: Crystallization from the melt state. J Appl Polym Sci 78:338–354. doi:10.1002/1097-4628(20001010

    Article  CAS  Google Scholar 

  39. Balta-Calleja FJ, Fakirov S (2000) Microhardness of polymers. Cambridge University Press, Cambridge

    Book  Google Scholar 

  40. Mazzobre MF, Aguilera JM, Buera MP (2003) Microscopy and calorimetry as complementary techniques to analyze sugar crystallization from amorphous systems. Carbohydr Res 338:541–548

    Article  CAS  Google Scholar 

  41. Krumme A (2004) Measuring crystallization kinetics of high density polyethylene by improved hot-stage polarized light microscopy. Polym Test 23:29–34. doi:10.1016/S0142-9418(03)00058-8

    Article  CAS  Google Scholar 

  42. Zeng A, Zheng Y, Qiu S, Guo Y (2011) Isothermal Crystallization and melting behavior of polypropylene with lanthanum complex of cyclodextrin derivative as a b-nucleating agent. J Appl Polym Sci 121:3651–3661. doi:10.1002/app.34183

    Article  CAS  Google Scholar 

  43. Sencadas V, Costa CM, Gómez Ribelles JL, Lanceros-Mendez S (2010) Isothermal crystallization kinetics of poly(vinylidene fluoride) in the a-phase in the scope of the Avrami equation. J Mater Sci 45:1328–1335. doi:10.1007/s10853-009-4086-3

    Article  CAS  Google Scholar 

  44. Castillo RV, Müller AJ, Raquez JM, Dubois P (2010) Crystallization kinetics and morphology of biodegradable double crystalline PLLA-b-PCL diblock copolymers. Macromolecules 43:4149–4160. doi:10.1021/ma100201g

    Article  CAS  Google Scholar 

  45. Wang F, Liu Y, Jin Q, Huang J, Meng Z, Wang X (2011) Kinetic analysis of isothermal crystallization in hydrogenated palm kernel stearin with emulsifier mixtures. Food Res Int 44:3021–3025

    Article  CAS  Google Scholar 

  46. Choi HJ, Ray SS (2011) A review on melt-state viscoelastic properties of polymer nanocomposites. J Nanosci Nanotechnol 11:8421–8449. doi:10.1166/jnn.2011.4880

    Article  CAS  Google Scholar 

  47. Zhou K, Gu SY, Zhang YH, Ren J (2012) Effect of dispersion on rheological and mechanical properties of polypropylene/carbon nanotubes nanocomposites. Polym Eng Sci 52:1485–1495. doi:10.1002/pen.23098

    Article  CAS  Google Scholar 

  48. Potschke P, Abdel-Goad M, Pegel S, Jehnichen D, Mark JE, Zhou D, Heinrich G (2009) Comparisons among electrical and rheological properties of melt-mixed composites containing various carbon nanostructures. J Macromol Sci Part A 47:12–19. doi:10.1080/10601320903394397

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank to the Czech Science Foundation (P205/10/0348) and to the Institute of Macromolecular chemistry AS CR, v. v. i. (RVO: 61389013) for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Mikešová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikešová, J., Šlouf, M., Gohs, U. et al. Nanocomposites of polypropylene/titanate nanotubes: morphology, nucleation effects of nanoparticles and properties. Polym. Bull. 71, 795–818 (2014). https://doi.org/10.1007/s00289-013-1093-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-013-1093-y

Keywords

Navigation