Skip to main content
Log in

Synergistic effect of nanoTiO2 and nanoclay on mechanical, flame retardancy, UV stability, and antibacterial properties of wood polymer composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Wood–polymer nanocomposite (WPNC) based on styrene–acrylonitrile copolymer (SAN), γ-trimethoxy silyl propyl methacrylate-modified TiO2 nanoparticles, and nanoclay was prepared by impregnation. The flexural, tensile, and flame-retardant properties were improved. UV stability was evaluated by photo-induced weight loss, FTIR, loss in mechanical properties, and scanning electron microscopy. The results showed that UV stability was maximum for wood sample treated with SAN/TiO2 (0.5 %)/nanoclay (0.5 %). The presence of TiO2 nanoparticles in WPNC-exhibited antibacterial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rowell RM (2005) Handbook of wood chemistry & wood composites. CRC Press, Washington, DC

    Google Scholar 

  2. Bryne LE, Walinder MEP (2010) Ageing of modified wood. Part 1: wetting properties of acetylated, furfurylated, and thermally modified wood. Holzforschung 64:295–304

    CAS  Google Scholar 

  3. Li Y, Liu Y, Wang X, Wu Q, Yu H, Li J (2011) Wood–polymer composites prepared by the in situ polymerization of monomers within wood. J Appl Polym Sci 119:3207–3216

    Article  CAS  Google Scholar 

  4. Ashori A, Behzad, HM, Tarmian, A. 2012. Effect of chemical preservative treatments on durability of wood flour/HDPE composites. Compos Part B. doi:10.1016/j.compositesb.2012.11.022

  5. Hamzeh Y, Ashori A, Khorasani Z, Abdulkani A, Abyaz A (2013) Pre-extraction of hemicelluloses from bagasse fibers: effects of dry-strength additives on paper. Ind Crop Prod 43(5):365–371

    Article  CAS  Google Scholar 

  6. Ashori A, Ornelas M, Sheshmani S, Cordeiro N (2012) Influence of mild alkaline treatment on the surface properties of agro-residues fibers. Carbohyd Polym 88(4):1293–1298

    Article  CAS  Google Scholar 

  7. Cordeiro N, Ornelas M, Ashori A, Sheshmani S, Norouzi H (2012) Investigation on the surface properties of chemically modified natural fibers using inverse gas chromatography. Carbohyd Polym 87(4):2367–2375

    Article  CAS  Google Scholar 

  8. Li J, Yu H, Sun Q, Liu Y, Cui Y, Lu Y (2010) Growth of TiO2 coating on wood surface using controlled hydrothermal method at low temperatures. Appl Surf Sci 256:5046–5050

    Article  CAS  Google Scholar 

  9. Cai X, Riedl B, Zhang SY, Wan H (2008) The impact of nature of nanofillers on the performance of wood polymer nanocomposites. Compos A 39:727–737

    Article  Google Scholar 

  10. Lu GWH (2008) Structure and characterization of Chinese fir (Cunninghamia lanceolata) wood/MMT intercalation nanocomposite (WMNC). Front For China 3:121–126

    Article  Google Scholar 

  11. Devi RR, Maji TK (2012) Chemical modification of simul wood with styrene–acrylonitrile copolymer and organically modified nanoclay. Wood Sci Technol 46:299–315

    Article  CAS  Google Scholar 

  12. Devi RR, Maji TK (2011) Preparation and characterization of wood/styrene–acrylonitrile copolymer/MMT nanocomposite. J Appl Polym Sci 122:2099–2109

    Article  CAS  Google Scholar 

  13. Fujishima A, Rao TN, Tryk DN (2000) Titanium dioxide photocatalysis. J Photobiol Photochem Rev 1:1–21

    Article  CAS  Google Scholar 

  14. O’regan Z, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  15. Kim T, Lee M, Lee S, Park Y, Jung C, Boo J (2005) Development of surface coating technology of TiO2 powder and improvement of photocatalytic activity by surface modification. Thin Solid Films 475:171–177

    Article  CAS  Google Scholar 

  16. Miyafuji H, Saka S (1997) Fire-resisting properties in several TiO2 wood–inorganic composites and their topochemistry. Wood Sci Technol 31:449–455

    CAS  Google Scholar 

  17. Chen F, Yang X, Wu Q (2009) Antifungal capability of TiO2 coated film on most wood. Build Environ 44:1088–1093

    Article  Google Scholar 

  18. Rassam G, Abdi Y, Ab A (2011) Deposition of TiO2 nano-particles on wood surfaces for UV and moisture protection. J Exp Nanosci. doi:10.1080/17458080.2010.538086

  19. Saha S, Kocaefe D, Sarkar DK, Boluk Y, Pichette A (2011) Effect of TiO2-containing nano-coatings on the color protection of heat-treated jack pine. J Coat Technol Res 8:183–190

    Article  CAS  Google Scholar 

  20. Mahltig B, Swaboda C, Roessler A, Böttcher Z (2008) Functionalising wood by nanosol application. J Mater Chem 18:3180–3192

    Article  CAS  Google Scholar 

  21. Schmalzl KJ, Evans PD (2003) Wood surface protection with some titanium, zirconium and manganese compounds. Polym Degrad Stab 82:409–419

    Article  CAS  Google Scholar 

  22. Saka S, Yakake Y (1993) Wood-inorganic composites prepared by sol–gel process III. Chemically-modified wood–inorganic composites. Mokuzai Gakkaishi 39:308–314

    CAS  Google Scholar 

  23. Tshabalala MA, Libert R, Schaller CM (2011) Photostability and moisture uptake properties of wood veneers coated with a combination of thin sol–gel films and light stabilizers. Holzforschung 65:215–220

    Article  CAS  Google Scholar 

  24. Tanno F, Saka S, Yamamoto A, Takab K (1998) Antimicrobial TMSAH-added wood inorganic composite prepared by the sol–gel process. Holzforschung 52:365–370

    Article  CAS  Google Scholar 

  25. Clausen CA, Kartal SN, Arango RA, Green F (2011) The role of particle size of particulate nano-zinc oxide wood preservatives on termite mortality and leach resistance. Nanoscale Res Lett 6:427

    Article  CAS  Google Scholar 

  26. Devi RR, Maji TK (2012) Study on properties of simul wood (Bombax ceiba L.) impregnated with styrene–acrylonitrile copolymer, TiO2, and nanoclay. Polym Bull 69:105–123

    Article  CAS  Google Scholar 

  27. Ashraf SM, Ahmad S, Riaz U (2009) A laboratory manual of polymers. In: Experiments in material science and material chemistry, vol 1. I. K. International Pvt. Ltd, New Delhi, pp 1–134

  28. Rong Y, Chen HJ, Wu G, Wang M (2005) Preparation and characterization of titanium dioxide nanoparticle/polystyrene composites via radical polymerization. Mater Chem Phys 91:370–374

    Article  CAS  Google Scholar 

  29. Stark NM, Matuana LM (2004) Surface chemistry changes of weathered HDPE/wood–flour composites studied by XPS and FTIR spectroscopy. Polym Degrad Stab 86:1–9

    Article  CAS  Google Scholar 

  30. Nguyen T, Pellegrin BT, Shapiro AJ, Gu X,Chin J (2009) Degradation and nanofiller release of polymer nanocomposites exposed to UV. In: Proceedings of the 4th European weathering symposium, NIST, Budapest, 15–18 Sept 2009

  31. Perez C, Paul M, Bazerque P (1990) Antibiotic assay by agar-well diffusion method. Acta Biol Med Exp 15:113–115

    Google Scholar 

  32. Sun Q, Lu Y, Liu Y (2011) Growth of hydrophobic TiO2 on wood surface using a hydrothermal method. J Mater Sci 46(42):7706–7712

    Article  CAS  Google Scholar 

  33. Jaya Vani S, Mohanty S, Parvaiz MR, Nayak SK (2011) Influence of nanoclays and nano-TiO2 on the mechanical and thermal properties of polycarbonate nanocomposite. Macromol Res 19:563–572

    Article  Google Scholar 

  34. Camino G, Tartagilione G, Frache A, Manferti C, Costa G (2005) Thermal and combustion behaviour of layered silicate–epoxy nanocomposites. Polym Degrad Stab 90:354–362

    Article  CAS  Google Scholar 

  35. Nussbaumer RJ, Caseri WR, Smith P, Tervoort T (2003) Polymer–TiO2 nanocomposites: a route towards visually transparent broadband UV filters and high refractive index materials. Macromol Mater Eng 288:44–49

    Article  CAS  Google Scholar 

  36. Ndiaye D, Fanton E, Morlat-Therias S, Vidal L, Tidjani A, Gardette JL (2008) Durability of wood polymer composites; part 1: influence of wood on the photochemical properties. Compos Sci Technol 68:2779–2784

    Article  CAS  Google Scholar 

  37. George B, Suttie E, Merlin A, Deglise X (2005) Photodegradation & photostabilisation of wood the state of the art. Polym Degrad Stab 88:268–274

    Article  CAS  Google Scholar 

  38. Du H, Wang W, Wang Q, Zhang Z, Sui S, Zhang Y (2010) Effects of pigments on the UV degradation of wood–flour/HDPE composites. J Appl Polym Sci 118:1068–1076

    CAS  Google Scholar 

  39. Grigoriadou I, Paraskevopoulos KM, Chrissafis K, Pavlidou E, Stamkopoulos TG, Bikiaris D (2011) Effect of different nanoparticles on HDPE UV stability. Polym Degrad Stab 96:151–163

    Article  CAS  Google Scholar 

  40. Luo Z, Cai H, Liu J, Hong W, Tang S (2005) Preparation of TiO2 on the glass and hydrophilicity under sunlight irradiation. Key Eng Mater 180:827–830

    Article  Google Scholar 

  41. Yoshida K, Tanagawa M, Atsuta M (2001) Effects of filler composition and surface treatment on the characteristics of opaque resin composites. J Biomed Mater Res (Appl Biomater) 58:525–530

    Article  CAS  Google Scholar 

  42. Lin J, Siddiqui JA, Ottenbrite RM (2001) Surface modification of inorganic oxide particles with silane coupling agent and organic dyes. Polym Adv Tech 12:285–292

    Article  CAS  Google Scholar 

  43. Siddiquey IA, Ukaji E, Furusawa T, Sato M, Suzuki N (2007) Preparation and characterization of titanium dioxide nanoparticle/polystyrene composites via radical polymerization. Mater Chem Phys 105:162–168

    Article  CAS  Google Scholar 

  44. Mirabedini SM, Sabzi M, Zohuriaan-Mehr J, Atai M, Behzadnasab M (2011) Weathering performance of the polyurethane nanocomposite coatings containing silane treated TiO2 nanoparticles. Appl Surf Sci 257:4196–4203

    Article  CAS  Google Scholar 

  45. Williams RS (2005) Weathering of Wood. In: Rowell RM (ed) Handbook of wood chemistry and wood products. CRC press, Washington, DC, pp 142–185

    Google Scholar 

  46. Hua D, Cheuk K, Wei-ning Z, Chen W, Chang-fa X (2007) Low temperature preparation of nanoTiO2 and its application as antibacterial agents. Trans Nonferrous Met Soc China 17:700–703

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashmi R. Devi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devi, R.R., Gogoi, K., Konwar, B.K. et al. Synergistic effect of nanoTiO2 and nanoclay on mechanical, flame retardancy, UV stability, and antibacterial properties of wood polymer composites. Polym. Bull. 70, 1397–1413 (2013). https://doi.org/10.1007/s00289-013-0928-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-013-0928-x

Keywords

Navigation