Skip to main content
Log in

Nanocomposites of PLA/PP blends based on sepiolite

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In the present study, the effectiveness of four polymers grafted with maleic anhydride used as compatibilizers in blends with poly(lactic acid) and its composites with sepiolite as matrices was evaluated in terms of transmission and scanning electron microscopy, oscillatory shear flow and tensile properties. Two polypropylenes were used as dispersed phases in the blends prepared in a corotating twin-screw extruder. Results showed that the compatibilized blends prepared without clay have higher susceptibility to isothermal degradation and higher tensile toughness than those prepared with sepiolite. The blend with the grafted metallocene polyethylene as compatibilizer exhibited the highest tensile toughness. The composites based on polyblends with polypropylene displayed lower tensile strength and Young’s modulus values, increased values of elongation at break, tensile toughness, complex viscosity, and storage modulus compared to those of the nanocomposite of PLA. These results are related to the clay dispersion, to the type of morphology of the different blends, to the grafting degree of the compatibilizers, and to the migration of the sepiolite toward the PP interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539

    Article  Google Scholar 

  2. Pavlidov S, Papaspyrides CD (2008) A review on polymer-layered silicate nanocomposites. Prog Polym Sci 33:1119

    Article  Google Scholar 

  3. Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9:63

    Article  CAS  Google Scholar 

  4. Paul DR, Newman S (1978) Polymer blends. Academic Press, New York

    Google Scholar 

  5. Baker W, Scott C, Hu G-H (2001) Reactive polymer blending. Hanser Publisher, Cincinnati

    Google Scholar 

  6. Wang Y, Hillmyer MA (2001) Polyethhylene-poly(L-lactide) diblock copolymers: synthesis and compatibilization of poly(L-lactide)/polyethylene blends. J Polym Sci Polym Chem 39:2755

    Article  CAS  Google Scholar 

  7. Reddy N, Nama D, Yang Y (2008) Polylactic acid/polypropylene polyblend fibers for better resistance to degradation. Polym Degrad Stab 93:233

    Article  CAS  Google Scholar 

  8. Chang-Hong H, Wang C, Lin C, Lee Y (2008) Synthesis and characterization of TPO–PLA copolymer and its behaviour as compatibilizer for PLA/TPO blends. Polymer 49:3902

    Article  Google Scholar 

  9. Bourbigot S, Fontaine G (2008) Processing and nanodispersion: a quantitative approach for polylactide nanocomposite. Polym Test 27:2

    Article  CAS  Google Scholar 

  10. Sinha Ray S, Maiti P, Okamoto M, Yamada K, Ueda K (2002) New polylactide/layered silicate nanocomposites. 1. Preparation, characterization and properties. Macromolecules 35:3104

    Article  Google Scholar 

  11. Sinha Ray S, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50:962

    Article  Google Scholar 

  12. Shaobo X, Zhang S, Wang F, Yang M, Séguéla R, Lefebvre JM (2007) Preparation, structure and thermomechanical properties of Nylon-6 nanocomposites with lamella-type and fiber-type sepiolite. Comp Sci Technol 67:2334

    Article  Google Scholar 

  13. Fukushima K, Tabuani D, Camino G (2009) Nanocomposites of PLA and PCL based on montmorillonite and sepiolite. Mater Sci Eng 29:1433

    Article  CAS  Google Scholar 

  14. Fenouillot F, Cassagnau P, Majesté JC (2009) Uneven distribution of nanoparticles in inmiscible fluids: morphology development in polymer blends. Polymer 50:1333

    Article  CAS  Google Scholar 

  15. Helmy AK, de Busetti SG (2008) The superface properties of sepiolite. Appl Surf Sci 255:2920

    Article  CAS  Google Scholar 

  16. Signori F, Coltelli M, Bronco S (2009) Thermal degradation of poly(lactid acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) and their blens upon melt processing. Polym Degrad Stab 94:74

    Article  CAS  Google Scholar 

  17. Han DC (2007) Rheology and processing of polymeric materials. Polymer rheology, vol 1. Oxford University Press, Oxford

    Google Scholar 

  18. Minoshima W, White JL, Spruiell JE (1980) Experimental investigation of the influence of molecular weight distribution on the rheological properties of polypropylene melts. Polym Eng Sci 20:1166

    Article  CAS  Google Scholar 

  19. Nachtigall SMB, Baumhardt Neto R, Mauler RS (1999) A factorial design applied to polypropylene functionalization with maleic anhydride. Polym Eng Sci 39:630

    Article  CAS  Google Scholar 

  20. Moad G (1999) Synthesis of poluolefin graft copolymers by reactive extrusion. Prog Polym Sci 24:81

    Article  CAS  Google Scholar 

  21. Kim ES, Kim BC, Kim SH (2004) Structural effect of linear and star-shaped poly(l-lactic acid) on physical properties. J Polym Sci Polym Phys 42:939

    Article  CAS  Google Scholar 

  22. Wunderlich B (1990) Thermal analysis. Academic Press, London

    Google Scholar 

  23. Benavente R, Pérez E, Quijada R (2001) Effect of comonomer content on the mechanical parameters and microhardness values in poly(ethylene-co-1-octadecene) synthesized by a metallocene catalyst. J Polym Sci Polym Phys 39:277

    Article  CAS  Google Scholar 

  24. Hapuarachchi TD, Peijs T (2010) Multiwalled carbon nanotubes and sepiolite nanoclays as flame retardants for polylactide and its fibre reinforced composites. Composites 41:954

    Article  Google Scholar 

  25. Tartaglione G, Tabuani D, Camino G, Moisio M (2008) PP and PBT composites filled with sepiolite: morphology and thermal behaviour. Comp Sci Tech 68:451

    Article  CAS  Google Scholar 

  26. Varela C, Rosales C, Perera R, Matos M, Poirier T, Blunda J (2006) Functionalized polypropylenes in the compatibilization and dispersion of clay nanocomposites. Polym Compos 27:451

    Article  CAS  Google Scholar 

  27. Liu X, Zou Y, Li W, Cao G, Chen W (2006) Kinetic of thermo-oxidative and thermooxidative and thermal degradation of poly(d,l-lactide) (PDLLA) at processing temperature. Polym Degrad Stab 91:3259

    Article  CAS  Google Scholar 

  28. Zhou Q, Xanthos M (2009) Nanosize and microsize clay effects on the kinetic of the thermal degradation of polylactides. Polym Degrad Stab 94:327–338

    Article  CAS  Google Scholar 

  29. Bilotti E, Zhang R, Deng H, Quero F, Fischer HR, Peijs T (2009) Sepiolite needle-like clay for PA6 nanocomposites: an alternative to layered silicates? Comp Sci Tech 69(15–16):2587

    Article  CAS  Google Scholar 

  30. Pillin I, Monrelay N, Bourmaud A, Grohems Y (2008) Effect of thermo-mechanical cycles on physico-chemical properties of poly(lactic acid). Polym Degrad Stab 93:321

    Article  CAS  Google Scholar 

  31. Taubner V, Shishoo R (2001) Influence of processing parameters on degradation of poly(L-lactide) during extrusion. J Appl Polym Sci 79:2128

    Article  CAS  Google Scholar 

  32. Kim GM, Michler GH, Rösch J, Mülhaupt R (1998) Micromechanical deformation processes in thoughened PP/PA/SEBS-g-MA blends prepared by reactive processing. Acta Polym 49:88

    Article  CAS  Google Scholar 

  33. Wilkinson AN, Clemens ML, Harding VM (2004) The effect of SEBS-g-maleic anhydride reaction on the morphology and properties of polypropylene/PA6/SEBS ternary blends. Polymer 45:5239

    Article  CAS  Google Scholar 

  34. Kusmono, Mohd Ishak ZA, Chow WS, Takeichi T, Rochmadi (2008) Compatibilizing effect of SEBS-g-MA on the mechanical properties of different types of OMMT filled poluamide 6/polypropylene nanocomposites. Composites 39:1802

    Article  Google Scholar 

  35. Han CD (2007) Rheology and processing of polymeric materials, polymer processing, vol 2. Oxford University Press, Oxford

    Google Scholar 

  36. Rosales C, Contreras V, Matos M, Perera, Villarreal N, García-López D, Pastor JM (2008) Morphological, rheological and mechanical characterization of polypropylene nanocomposite blends. Nanosci Nanotechnol J 8:1762

    Article  CAS  Google Scholar 

  37. Bai SL, G′Sell C, Hiver JM, Mathieu C (2005) Polypropylene/polyamide 6/polyethylene-octene elastomer blends. Part 3. Mechanisms of volume dilatation during plastic deformation under uniaxial tension. Polymer 46:6437

    Article  CAS  Google Scholar 

  38. Grim R (1962) Clay mineralogy. McGraw-Hill, New York

    Google Scholar 

  39. Chow WS, Bakar AA, Mohd ZA, Karger-Kocsis J, Ishiaku US (2005) Effect of maleic anhydride-grafted ethylene–propylene rubber on the mechanical, rheological and morphological properties of organoclay reinforced polyamide6/polypropylene nanocomposites. Eur Polym J 41:687

    Article  CAS  Google Scholar 

  40. Gallego R, García-López D, López-Quintana S, Gobernado-Mitre I, Merino JC, Pastor JM (2008) Influence of blending sequence on micro- and macrostructure of PA6/mEPDM/EPDMgMA blends reinforced with organoclay. J Appl Polym Sci 109:1556

    Article  CAS  Google Scholar 

  41. Dasari A, Yu ZZ, Mai YW (2005) Effect of blending sequence on microstructure of ternary nanocomposites. Polymer 46:5986

    Article  CAS  Google Scholar 

  42. Sinha Ray S, Yamada K, Okamoto M, Ueda K (2003) New polylactide-layered silicate nanocomposites. 2. Concurrent improvements of material properties, biodegradability and melt rheology. Polymer 44:857

    Article  CAS  Google Scholar 

  43. Arroyo OH, Huneault MA, Favis BD, Bureau MN (2010) Processing and properties of PLA/thermoplastic starch/montmorillonite nanocomposites. Polym Compos 31:114

    CAS  Google Scholar 

  44. Galgali G, Ramesh C, Lele A (2001) A rheological study on the kinetics of hybrid formation in polypropylene nanocomposites. Macromolecules 34:852

    Article  CAS  Google Scholar 

  45. Durmus A, Kasgoz A, Macosko CW (2007) Linear low density polyethylene (LLDPE)/clay nanocomposites. Part I: Structural characterization and quantifying clay dispersion by melt rheology. Polymer 48:4492

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support from Simón Bolívar University (Grupo G-014), the Ministerio de Educación y Ciencia/Spain (MAT2008-06379) and the Junta de Castilla y León (GR104). The authors also thank Propilven C. A. for supplying the PP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Nuñez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nuñez, K., Rosales, C., Perera, R. et al. Nanocomposites of PLA/PP blends based on sepiolite. Polym. Bull. 67, 1991–2016 (2011). https://doi.org/10.1007/s00289-011-0616-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-011-0616-7

Keywords

Navigation