Skip to main content

Advertisement

Log in

Kinetics of thermal decomposition and antimicrobial screening of terpolymer resins

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polycondensation technique was employed to synthesize terpolymer resins of anthranilic acid, urea, and formaldehyde (AUF-I, II, and III) in dimethyl formamide medium with varying mole proportions. The terpolymer was characterized by infra-red, nuclear magnetic resonance (1H and 13C) spectroscopy, gel permeation chromatography (GPC), and scanning electron microscopy (SEM). The thermal decomposition pattern and the kinetics of thermal decomposition of the terpolymers were investigated by thermogravimetric analysis (TGA) in a static nitrogen atmosphere at a heating rate of 20 °C/min. Freeman–Carroll and Sharp–Wentworth methods have been adopted to evaluate the kinetic and thermodynamic parameters such as thermal activation energies (E a), order of the reaction (n), entropy change (ΔS), free energy change (ΔF), apparent entropy (S*), and frequency factor (Z). The thermal decomposition model for the terpolymers was also proposed using Phadnis–Deshpande method. The synthesized terpolymer resins were screened for antimicrobial activity against pathogenic bacteria and fungi. The resins show potent inhibition against bacteria such as Escherichia coli, Klebsiella, Staphylococcus aureus, and Pseudomonas aeruginosa and fungi viz. Aspergillus flavus, Aspergillus niger, Penicillium species, Candida albicans, Cryptococcus neoformans, and Mucor species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rao MPR, Rao BSM, Rajan CR, Ghadage RS (1998) Thermal degradation kinetics of phenol–crotonaldehyde resins. Polym Degrad Stab 61:283–288

    Article  CAS  Google Scholar 

  2. Yang MH (2000) The thermal degradation of acrylonitrile–butadiene–styrene terpolymer under various gas conditions. Polym Test 19:105–110

    Article  CAS  Google Scholar 

  3. Ahamed T, Kumar V, Nishat N (2006) Synthesis, characterization and antimicrobial activity of transition metal chelated thiourea–formaldehyde resin. Polym Int 55:1398–1406

    Article  Google Scholar 

  4. Liu Q, Zao Y, Bei Y, Qi G, Meng Y (2008) Mechanic properties and thermal degradation kinetics of terpolymer poly(propylene cyclohexene carbonate)s. Mater Lett 62:3294–3296

    Article  CAS  Google Scholar 

  5. Sun JT, Huang YD, Gong GF, Cao HL (2006) Thermal degradation kinetics of poly(methylphenylsiloxane) containing methacryloyl groups. Polym Degrad Stab 91:339–346

    Article  CAS  Google Scholar 

  6. Devapal D, Packirisamy S, Ambadas G, Radhakrishnan TS, Krishnan K, Ninnan KN (2004) Thermal degradation kinetics of poly(methylvinylsilylene-co-styrene). Thermochim Acta 409:151–156

    Article  CAS  Google Scholar 

  7. Singru RN, Gurnule WB (2010) Thermogravimetric study of 8-hydroxyquinoline 5-sulfonic acid-melamine–formaldehyde terpolymer resins-II. J Therm Anal Calorim 100:1027–1036

    Article  CAS  Google Scholar 

  8. Jadhao MM, Paliwal LJ, Bhave NS (2006) Resin II: thermal degradation studies of terpolymer resins derived from 2,2-dihydroxybiphenyl, urea, and formaldehyde. J Appl Polym Sci 101:227–232

    Article  CAS  Google Scholar 

  9. Michael PEP, Lingala PS, Juneja HD, Paliwal LJ (2004) Synthetic, structural, and thermal degradation of a tercopolymer derived from salicylic acid, guanidine, and formaldehyde. J Appl Polym Sci 92:2278–2283

    Article  CAS  Google Scholar 

  10. Azarudeen RS, Riswan Ahamed MA, Burkanudeen AR (2011) Chelating terpolymer resin: synthesis, characterization and its ion-exchange properties. Desalination 268:90–96

    Google Scholar 

  11. Riswan Ahamed MA, Azarudeen RS, Jeyakumar D, Burkanudeen AR (2011) Terpolymer chelates: synthesis, characterization, and biological applications. Int J Polym Mater 60:142–143

    Google Scholar 

  12. Patel MM, Kapadia MM, Joshi JD (2009) Thermal, catalytic and antimicrobial aspects of polychelates of phenolic resin with lanthanides (III). Eur Polym J 45:426–436

    Article  CAS  Google Scholar 

  13. Nishat N, Ahmad S, Rahisuddin, Ahamad T (2006) Synthesis and characterization of antibacterial polychelates of urea–formaldehyde resin with Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), and Zn(II) metal ions. J Appl Polym Sci 100:928–936

    Article  CAS  Google Scholar 

  14. Parveen S, Ahamad T, Nishat N (2008) New anti-bacterial polychelates: synthesis, characterization, and anti-bacterial activities of thiosemicarbazide–formaldehyde resin and its polymer–metal complexes. Appl Organomet Chem 22:70–77

    Article  CAS  Google Scholar 

  15. Patel JN, Dolia MB, Patel KH, Patel RM (2006) Homopolymer of 4-chloro-3-methyl phenyl methacrylate and its copolymers with butyl methacrylate: synthesis, characterization, reactivity ratios and antimicrobial activity. J Polym Res 13:219–228

    Article  CAS  Google Scholar 

  16. Freeman ES, Caroll B (1958) The application of thermoanalytical techniques to reaction kinetics. The thermogravimetric evaluation of the kinetics of the decomposition of calcium oxalate monohydrate. J Phys Chem 62:394–397

    Article  CAS  Google Scholar 

  17. Sharp JB, Wentworth SA (1969) Kinetic analysis of thermogravimetric data. Anal Chem 41:2060–2062

    Article  CAS  Google Scholar 

  18. Phadnis AB, Deshpande W (1983) Determination of the kinetics and mechanism of a solid state reaction. A simple approach. Thermochim Acta 62:361–367

    Article  CAS  Google Scholar 

  19. Riswan Ahamed MA, Azarudeen RS, Karunakaran M, Burkanudeen AR (2010) Synthesis, characterization, metal ion binding capacities and applications of a terpolymer resin of anthranilic acid/salicylic acid/formaldehyde. Iran Polym J 19:635–646

    Google Scholar 

  20. Devi GS, Muthu AK, Kumar DS, Rekha S, Indhumathi, Nandhini R (2009) Studies on the antibacterial and antifungal activities of the ethanolic extracts of luffa cylindrica (linn) fruit. Int J Drug Dev Res 1:105–110

    Google Scholar 

  21. Azarudeen RS, Riswan Ahamed MA, Jeyakumar D, Burkanudeen AR (2009) An eco-friendly synthesis of a terpolymer resin: characterization and chelation ion-exchange property. Iran Polym J 18:821–832

    CAS  Google Scholar 

  22. Riswan Ahamed M, Azarudeen R, Karunakaran M, Karikalan T, Manikandan R, Burkanudeen A (2010) Cation exchange properties of a terpolymer: synthesis and characterization. Int J Chem Environ Eng 1:7–12

    Google Scholar 

  23. Silverstein RM, Webster FX (1998) Spectrometric identification of organic compounds, 6th edn. Wiley, New York

    Google Scholar 

  24. Azarudeen R, Riswan Ahamed M, Arunkumar P, Prabu N, Jeyakumar D, Burkanudeen A (2010) Metal sorption studies of a novel terpolymer resin. Int J Chem Environ Eng 1:23–28

    Google Scholar 

  25. Burkanudeen A, Azarudeen R, Riswan Ahamed M, Ramesh P, Vijayan N (2010) Synthesis and analytical applications of a chelating resin. Int J Chem Environ Eng 1:29–34

    Google Scholar 

  26. Pretsch E, Buhlmann P, Afflolter C (2000) Structure determination of organic compounds. Springer, New York

    Google Scholar 

  27. Masram DT, Bhave NS, Kariya KP (2010) Kinetics study of thermal degradation of resin derived from salicylaldehyde, ethylenediamine and formaldehyde. E J Chem 7:564–568

    CAS  Google Scholar 

  28. Liu Y, Peng D, Huang K, Liu S, Liu Z (2010) Preparation and thermal degradation kinetics of terpolymer poly(є-caprolactone-co-1,2-butylene carbonate). Polym Degrad Stab 95:2453–2460

    Google Scholar 

  29. Bagihalli GB, Patil SA, Badami PS (2009) Synthesis, physicochemical investigation and biological studies of zinc(II) complexes with 1,2,4-triazole schiff bases. J Iran Chem Soc 6:259–270

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Management and Principal of Jamal Mohamed College, Tiruchirappalli, Tamil Nadu and Dr. D. Jeyakumar, Scientist, Central Electrochemical Research Institute (CECRI), Karaikudi, and M. Karunakaran, SSK College of Engineering and Technology, Coimbatore, Tamil Nadu for their support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul R. Burkanudeen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burkanudeen, A.R., Azarudeen, R.S., Ahamed, M.A.R. et al. Kinetics of thermal decomposition and antimicrobial screening of terpolymer resins. Polym. Bull. 67, 1553–1568 (2011). https://doi.org/10.1007/s00289-011-0497-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-011-0497-9

Keywords

Navigation