Skip to main content
Log in

Organic Design of Massively Distributed Systems: A Complex Networks Perspective

  • HAUPTBEITRAG
  • MASSIVELY DISTRIBUTED SYSTEMS
  • Published:
Informatik-Spektrum Aims and scope

Abstract

The vision of Organic Computing addresses challenges that arise in the design of future information systems that are comprised of numerous, heterogeneous, resource-constrained and error-prone components. The notion organic highlights the idea that, in order to be manageable, such systems should exhibit self-organization, self-adaptation and self-healing characteristics similar to those of biological systems. In recent years, the principles underlying these characteristics are increasingly being investigated from the perspective of complex systems science, particularly using the conceptual framework of statistical physics and statistical mechanics. In this article, we review some of the interesting relations between statistical physics and networked systems and discuss applications in the engineering of organic overlay networks with predictable macroscopic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamic LA, Lukose RM, Puniyani AR (2001) Search in power-law networks. Phys Rev E 64(4):046135

    Article  Google Scholar 

  2. Albert R, Barabási A-L (2002) Statistical mechanics of complex networks. Rev Mod Phys 74(1):47–97

    Article  MATH  Google Scholar 

  3. Barabási A-L, Albert R, Jeong H (1999) Mean-field theory for scale-free random networks. Physica A 272(1–2):173–187

    Article  Google Scholar 

  4. Almendral JA, Díaz-Guilera A (2007) Dynamical and spectral properties of complex networks. New J Phys 9(6):187–187

    Article  Google Scholar 

  5. Arenas A, Díaz-Guilera A, Kurths J, Moreno Y, Zhou C (2008) Synchronization in complex networks. Phys Rep 469(3):93–153

    Article  MathSciNet  Google Scholar 

  6. Babaoglu Ö, Binci T, Jelasity M, Montresor A (2007) Firefly-inspired heartbeat synchronization in overlay networks. In: First International Conference on Self-Adaptive and Self-Organizing Systems, SASO’07, Boston, Mass., USA, July 9-11, pp 77–86, IEEE, 2007

  7. Balakrishnan H, Kaashoek MF, Karger D, Morris R, Stoica I (2003) Looking up data in P2P systems. Commun ACM 46(2):43–48

    Article  Google Scholar 

  8. Baldoni R, Corsaro A, Querzoni L, Scipioni S, Piergiovanni ST (2009) Coupling-Based Internal Clock Synchronization for Large-Scale Dynamic Distributed Systems. IEEE T Parall Distrib 99(RapidPosts):607–619

    Google Scholar 

  9. Barahona M, Pecora LM (2002) Synchronization in small-world systems. Phys Rev Lett 89(5):54101

    Article  Google Scholar 

  10. Barrat A, Barthélemy M, Vespignani A (2008) Dynamical processes on complex networks. Cambridge University Press, New York, NY, USA

    Book  MATH  Google Scholar 

  11. Berg J, Lässig M (2002) Correlated random networks. Phys Rev Lett 89(22):228701

    Article  Google Scholar 

  12. Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU (2006) Complex networks: Structure and dynamics. Phys Rep 424(4-5):175–308

    Article  MathSciNet  Google Scholar 

  13. Boguñá M, Krioukov D, Claffy KC (2008) Navigability of complex networks. Nat Phys 5(1):74–80

    Article  Google Scholar 

  14. Bollobas B (2001) Random graphs. Cambridge Univ. Press, Cambridge

    Book  MATH  Google Scholar 

  15. Cohen JE (1988) Threshold Phenomena in Random Structures. Discrete Appl Math 19(1–3):113–128

    Article  MathSciNet  MATH  Google Scholar 

  16. Cohen R, Erez K, Ben-Avraham D, Havlin S (2000) Resilience of the internet to random breakdowns. Phys Rev Lett 85(21):4626–4628

    Article  Google Scholar 

  17. Cohen R, Erez K, Ben-Avraham D, Havlin S (2001) Breakdown of the Internet under intentional attack. Phys Rev Lett 86:3682

    Article  Google Scholar 

  18. Demers A, Greene D, Hauser C, Irish W (1987) Epidemic algorithms for replicated database maintenance. In: Proceedings of the sixth annual ACM Symposium on Principles of distributed computing, Vancouver, BC, Canada, August 10–12, 1987, pp 1–12

  19. Dorogovtsev SN, Ferreira Mendes JF, Samukhin AN (2003) Principles of statistical mechanics of random networks. Nucl Phys B 666:396

    Article  MATH  Google Scholar 

  20. Erdős P, Rényi A (1959) On random graphs I. Publ Math Debrecen 6(290–297):156

    Google Scholar 

  21. Farkas I, Derényi I, Palla G, Vicsek T (2004) Equilibrium Statistical Mechanics of Network Structures. Lect Notes Phys 650:163–187

    Article  Google Scholar 

  22. Floyd S, Jacobson V (1994) The Synchronization of Periodic Routing Messages. IEEE/ACM T Netw 2:122–136

    Article  Google Scholar 

  23. Park J, Newman MEJ (2004) Statistical mechanics of networks. Phys Rev E 70(6): 066117, http://pre.aps.org/abstract/PRE/v70/i6/e066117

    Article  MathSciNet  Google Scholar 

  24. Gupta I, Kermarrec AM, Ganesh AJ (2006) Efficient and adaptive epidemic-style protocols for reliable and scalable multicast. IEEE T Parall Distrib 17(7):593–605

    Article  Google Scholar 

  25. Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1):97

    Article  MATH  Google Scholar 

  26. Jelasity M, Montresor A, Babaoglu Ö (2005) Gossip-based aggregation in large dynamic networks. ACM T Comput Syst 23(3):219–252

    Article  Google Scholar 

  27. Kleinberg JM (2006) Complex Networks and Decentralized Search Algorithms. In: International Congress of Mathematicians (ICM), 22–28 August 2006, Madrid, Spain

  28. Lee D-S, Goh K-I, Kahng B, Kim D-H (2004) Evolution of scale-free random graphs: Potts model formulation. Nucl Phys B 696:351–380

    Article  MathSciNet  MATH  Google Scholar 

  29. Lucarelli D, Wang I-J (2004) Decentralized synchronization protocols with nearest neighbor communication. In: SenSys ’04: Proceedings of the 2nd international conference on Embedded networked sensor systems, New York, NY, USA, ACM, pp 62–68

  30. Mattern F, Flörkemeier C (2010) Vom Internet der Computer zum Internet der Dinge. Informatik-Spektrum 33(2):107–121

    Article  Google Scholar 

  31. Mehta ML (1991) Random Matrices, 2 edn. Academic Press, New York

    Google Scholar 

  32. Molloy M, Reed B (1995) A critical point for random graphs with a given degree sequence. Random Struct Algor 6(2–3):161–180

    Article  MathSciNet  MATH  Google Scholar 

  33. Moreno Y, Nekovee M, Vespignani A (2004) Efficiency and reliability of epidemic data dissemination in complex networks. Phys Rev E 69(5):055101

    Article  Google Scholar 

  34. Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45(2):167–256

    Article  MathSciNet  MATH  Google Scholar 

  35. Noh JD (2004) Random Walks on Complex Networks. Phys Rev Lett 92(11):4

    Article  MathSciNet  Google Scholar 

  36. Papadopoulos F, Krioukov D, Boguna M, Vahdat A (2010) Greedy Forwarding in Dynamic Scale-Free Networks Embedded in Hyperbolic Metric Spaces. In: Proceedings of the IEEE Infocom Conference, March 19, 2010, San Diego, CA, USA

  37. Reichardt J, Bornholdt S (2006) Statistical mechanics of community detection. Phys Rev E 74(1):1–14

    MathSciNet  Google Scholar 

  38. Sandberg O (2006) Distributed routing in small-world networks. In: Proceedings of the eighth Workshop on Algorithm Engineering and Experiments and the third Workshop on Analytic Algorithmics and Combinatorics, Society for Industrial Mathematics, January 21, 2006, Miami, Florida, p 144

  39. Sarshar N, Boykin PO, Roychowdhury VP (2004) Percolation search in power law networks: Making unstructured peer-to-peer networks scalable. In: Proceedings of the Fourth International Conference on Peer-to-Peer Computing, IEEE Computer Society, 25–27th August 2004, Zurich

  40. Scholtes I (2010) Distributed Creation and Adaptation of Random Scale-Free Overlay Networks. In: Proceedings of the Fourth IEEE Conference on Self-Organizing and Self-Adaptive Systems (SASO), September 27–October 1, 2010, Budapest, Hungary, IEEE, pp 51–63

  41. Scholtes I (2011) Harnessing Complex Structures and Collective Dynamics in Large Networked Computing Systems. Dissertation, University of Trier

  42. Scholtes I, Botev J, Esch M, Sturm P (2010) Epidemic Self-Synchronization in Complex Networks of Kuramoto Oscillators. Adv Complex Syst 13(1):33–58

    Article  MathSciNet  MATH  Google Scholar 

  43. Scholtes I, Kolos S, Zema PF (2008) The ATLAS Event Monitoring Service – Peer-to-Peer Data Distribution in High-Energy Physics. IEEE T Nucl Sci 55(3):1610–1620

    Article  Google Scholar 

  44. Thadakamalla HP, Albert R, Kumara SRT (2007) Search in spatial scale-free networks. New J Phys 9(6):190–190

    Article  Google Scholar 

  45. Waldhorst OP, Bless R, Zitterbart M (2010) Overlay-Netze als Innovationsmotor im Internet. Informatik-Spektrum 33(2):171–185

    Article  Google Scholar 

  46. Weiser M (1991) The computer for the 21st century. Scientific American

  47. Willinger W, Alderson DL, Doyle JC (2009) Mathematics and the Internet: A Source of Enormous Confusion and Great Potential. Internet Res 56(5):586–599

    MathSciNet  MATH  Google Scholar 

  48. Zhong M, Shen K, Seiferas J (2008) The Convergence-Guaranteed Random Walk and Its Applications in Peer-to-Peer Networks. IEEE T Comput 57(5):619–633

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingo Scholtes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholtes, I., Tessone, C. Organic Design of Massively Distributed Systems: A Complex Networks Perspective. Informatik Spektrum 35, 75–86 (2012). https://doi.org/10.1007/s00287-012-0597-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00287-012-0597-4

Keywords

Navigation