Skip to main content
Log in

On the effects of carrying capacity and intrinsic growth rate on single and multiple species in spatially heterogeneous environments

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We first consider a diffusive logistic model of a single species in a heterogeneous environment, with two parameters, r(x) for intrinsic growth rate and K(x) for carrying capacity. When r(x) and K(x) are proportional, i.e., \(r=cK\), it is proved by Lou (J Differ Equ 223(2):400–426, 2006) that a population diffusing at any rate will reach a higher total equilibrium biomass than the population in an environment in which the same total resources are distributed homogeneously. This paper studies another case when r(x) is a constant, i.e., independent of K(x). In such case, a striking result is that for any dispersal rate, the logistic equation with spatially heterogeneous resources will always support a total population strictly smaller than the total carrying capacity at equilibrium, which is just opposite to the case \(r = cK\). These two cases of single species models also lead to two different forms of Lotka–Volterra competition-diffusion systems. We then examine the consequences of the aforementioned difference on the two forms of competition systems. We find that the outcome of the competition in terms of the dispersal rates and spatial distributions of resources for the two forms of competition systems are again quite different. Our results indicate that in heterogeneous environments, the correlation between r(x) and K(x) has more profound impacts in population ecology than we had previously expected, at least from a mathematical point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Download references

Acknowledgements

The research of X. He is supported in part by NSFC(11601155) and Science and Technology Commission of Shanghai Municipality (No. 18dz2271000); the research of W.-M. Ni is partially supported by NSF Grants DMS-1210400 and DMS-1714487, and NSFC Grant No. 11431005. The authors are also grateful to the anonymous referees for the careful reading and helpful suggestions which greatly improves the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqing He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Q., He, X. & Ni, WM. On the effects of carrying capacity and intrinsic growth rate on single and multiple species in spatially heterogeneous environments. J. Math. Biol. 81, 403–433 (2020). https://doi.org/10.1007/s00285-020-01507-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-020-01507-9

Keywords

Mathematics Subject Classification

Navigation