Skip to main content
Log in

Analysis of a model microswimmer with applications to blebbing cells and mini-robots

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Recent research has shown that motile cells can adapt their mode of propulsion depending on the environment in which they find themselves. One mode is swimming by blebbing or other shape changes, and in this paper we analyze a class of models for movement of cells by blebbing and of nano-robots in a viscous fluid at low Reynolds number. At the level of individuals, the shape changes comprise volume exchanges between connected spheres that can control their separation, which are simple enough that significant analytical results can be obtained. Our goal is to understand how the efficiency of movement depends on the amplitude and period of the volume exchanges when the spheres approach closely during a cycle. Previous analyses were predicated on wide separation, and we show that the speed increases significantly as the separation decreases due to the strong hydrodynamic interactions between spheres in close proximity. The scallop theorem asserts that at least two degrees of freedom are needed to produce net motion in a cyclic sequence of shape changes, and we show that these degrees can reside in different swimmers whose collective motion is studied. We also show that different combinations of mode sharing can lead to significant differences in the translation and performance of pairs of swimmers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. The measures of performance that are used here and in the literature do not include the work needed to move material between spheres in the PMPY and breather models, and thus the accordion model suffers by comparison in this respect.

  2. The reader can easily show that in the absence of volume exchange the net translation after a periodic extension and contraction of the rod produces no motion. This provides the simplest example of the scallop theorem discussed later.

  3. In the remainder we omit the \(^{\wedge }\) on nondimensionalized quantities for simplicity unless units are given, but since \(\delta \) appears in the equations this should not lead to any confusion.

References

  • Alexander G, Pooley C, Yeomans J (2009) Hydrodynamics of linked sphere model swimmers. J Phys Condens Matter 21(20):204108

    Article  Google Scholar 

  • Alexander GP, Yeomans JM (2008) Dumb-bell swimmers. EPL (Eur Lett) 83(3):34006

    Article  Google Scholar 

  • Avron J, Kenneth O, Oaknin D (2005) Pushmepullyou: an efficient micro-swimmer. New J Phys 7:234

    Article  Google Scholar 

  • Barry NP, Bretscher MS (2010) Dictyostelium amoebae and neutrophils can swim. Proc Natl Acad Sci 107(25):11376

    Article  Google Scholar 

  • Bergert M, Chandradoss SD, Desai RA, Paluch E (2012) Cell mechanics control rapid transitions between blebs and lamellipodia during migration. Proc Natl Acad Sci 109(36):14434–14439

    Article  Google Scholar 

  • Binamé F, Pawlak G, Roux P, Hibner U (2010) What makes cells move: requirements and obstacles for spontaneous cell motility. Mol BioSyst 6(4):648–661

    Article  Google Scholar 

  • Brennen CE (2013) Cavitation and bubble dynamics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Brenner H (1961) The slow motion of a sphere through a viscous fluid towards a plane surface. Chem Eng Sci 16(3–4):242–251

    Article  Google Scholar 

  • Charras G, Paluch E (2008) Blebs lead the way: how to migrate without lamellipodia. Nat Rev Mol Cell Biol 9(9):730–736

    Article  Google Scholar 

  • Childress S (1977) Mechanics of swimming and flying. Courant Institute of Mathematical Sciences, New York

    MATH  Google Scholar 

  • Cooley M, O’Neill M (1969a) On the slow motion generated in a viscous fluid by the approach of a sphere to a plane wall or stationary sphere. Mathematika 16(01):37–49

    Article  MATH  Google Scholar 

  • Cooley M, O’Neill M (1969b) On the slow motion of two spheres in contact along their line of centres through a viscous fluid. Math Proc Cambr Philos Soc 66(2):407–415 Cambridge Univ Press

    Article  MATH  Google Scholar 

  • Curtis MP, Gaffney EA (2013) Three-sphere swimmer in a nonlinear viscoelastic medium. Phys Rev E 87(4):043006

    Article  Google Scholar 

  • Dunkel J, Putz VB, Zaid IM, Yeomans JM (2010) Swimmer–tracer scattering at low Reynolds number. Soft Matter 6(17):4268–4276

    Article  Google Scholar 

  • Elgeti J, Winkler RG, Gompper G (2015) Physics of microswimmers—single particle motion and collective behavior: a review. Rep Prog Phys 78(5):056601

    Article  MathSciNet  Google Scholar 

  • Fackler OT, Grosse R (2008) Cell motility through plasma membrane blebbing. J Cell Biol 181(6):879–884

    Article  Google Scholar 

  • Friedl P, Alexander S (2011) Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147(5):992–1009

    Article  Google Scholar 

  • Friedl P, Wolf K (2003) Plasticity of cell migration: a multiscale tuning model. Nat Rev Cancer 3(5):362–74

    Article  Google Scholar 

  • Hancock G (1953) The self-propulsion of microscopic organisms through liquids. Proc R Soc Lond Ser A 217(1128):96–121

    Article  MathSciNet  MATH  Google Scholar 

  • Higdon JJL (1979) The hydrodynamics of flagellar propulsion: helical waves. J Fluid Mech 94:331–351

    Article  MathSciNet  MATH  Google Scholar 

  • Ishikawa T, Locsei J, Pedley T (2010) Fluid particle diffusion in a semidilute suspension of model micro-organisms. Phys Rev E 82(2):021408

    Article  Google Scholar 

  • Kim S, Karrila SJ (1991) Microhydrodynamics: principles and selected applications. Butterworth-Heinemann, New York

    Google Scholar 

  • Koiller J, Ehlers K, Montgomery R (1996) Problems and progress in microswimming. J Nonlinear Sci 6(6):507–541

    Article  MathSciNet  MATH  Google Scholar 

  • Kurtuldu H, Guasto JS, Johnson KA, Gollub JP (2011) Enhancement of biomixing by swimming algal cells in two-dimensional films. Proc Natl Acad Sci 108(26):10391–10395

    Article  Google Scholar 

  • Lämmermann T, Bader BL, Monkley SJ, Worbs T, Wedlich-Söldner R, Hirsch K, Keller M, Förster R, Critchley DR, Fässler R et al (2008) Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453(7191):51–55

    Article  Google Scholar 

  • Lauga E, Powers TR (2009) The hydrodynamics of swimming microorganisms. Rep Prog Phys 72(9):096601

    Article  MathSciNet  Google Scholar 

  • Lauga E (2011) Life around the scallop theorem. Soft Matter 7(7):3060–3065

    Article  Google Scholar 

  • Lauga E, Bartolo D (2008) No many-scallop theorem: collective locomotion of reciprocal swimmers. Phys Rev E 78(3):030901

    Article  Google Scholar 

  • Leptos KC, Guasto JS, Gollub JP, Pesci AI, Goldstein RE (2009) Dynamics of enhanced tracer diffusion in suspensions of swimming eukaryotic microorganisms. Phys Rev Lett 103(19):198103

    Article  Google Scholar 

  • Liang Z, Gimbutas Z, Greengard L, Huang J, Jiang S (2013) A fast multipole method for the Rotne–Prager–Yamakawa tensor and its applications. J Comput Phys 234:133–139

    Article  MathSciNet  MATH  Google Scholar 

  • Lin Z, Thiffeault J-L, Childress S (2011) Stirring by squirmers. J Fluid Mech 669:167–177

    Article  MathSciNet  MATH  Google Scholar 

  • Luke JH (1989) Convergence of a multiple reflection method for calculating Stokes flow in a suspension. SIAM J Appl Math 49(6):1635–1651

    Article  MathSciNet  MATH  Google Scholar 

  • Maiuri P, Rupprecht J-F, Wieser S, Ruprecht V, Bénichou O, Carpi N, Coppey M, Beco SD, Gov N, Heisenberg C-P et al (2015) Actin flows mediate a universal coupling between cell speed and cell persistence. Cell 161(2):374–386

    Article  Google Scholar 

  • Miño G, Mallouk TE, Darnige T, Hoyos M, Dauchet J, Dunstan J, Soto R, Wang Y, Rousselet A, Clement E (2011) Enhanced diffusion due to active swimmers at a solid surface. Phys Rev Lett 106(4):048102

    Article  Google Scholar 

  • Najafi A, Golestanian R (2004) Simple swimmer at low Reynolds number: three linked spheres. Phys Rev E 69(6):062901

    Article  Google Scholar 

  • Phan-Thien N, Tran-Cong T, Ramia M (1987) A boundary-element analysis of flagellar propulsion. J Fluid Mech 184:533–549

    Article  Google Scholar 

  • Pozrikidis C (1992) Boundary integral and singularity methods for linearized viscous flow. Cambridge Univ Press, Cambridge

    Book  MATH  Google Scholar 

  • Purcell EM (1977) Life at low Reynolds number. Am J Phys 45(1):3–11

    Article  Google Scholar 

  • Pushkin DO, Shum H, Yeomans JM (2013) Fluid transport by individual microswimmers. J Fluid Mech 726:5–25

    Article  MathSciNet  MATH  Google Scholar 

  • Qiu T, Lee T-C, Mark AG, Morozov KI, Münster R, Mierka O, Turek S, Leshansky AM, Fischer P (2014) Swimming by reciprocal motion at low Reynolds number. Nat Commun 5:5119

    Article  Google Scholar 

  • Renkawitz J, Schumann K, Weber M, Lämmermann T, Pflicke H, Piel M, Polleux J, Spatz JP, Sixt M (2009) Adaptive force transmission in amoeboid cell migration. Nat Cell Biol 11(12):1438–1443

    Article  Google Scholar 

  • Renkawitz J, Sixt M (2010) Mechanisms of force generation and force transmission during interstitial leukocyte migration. EMBO Rep 11(10):744–750

    Article  Google Scholar 

  • Ruprecht V, Wieser S, Callan-Jones A, Smutny M, Morita H, Sako K, Barone V, Ritsch-Marte M, Sixt M, Voituriez R et al (2015) Cortical contractility triggers a stochastic switch to fast amoeboid cell motility. Cell 160(4):673–685

    Article  Google Scholar 

  • Rushkin I, Kantsler V, Goldstein RE (2010) Fluid velocity fluctuations in a suspension of swimming protists. Phys Rev Lett 105(18):188101

    Article  Google Scholar 

  • Shum H, Gaffney E, Smith D (2010) Modelling bacterial behaviour close to a no-slip plane boundary: the influence of bacterial geometry. Proc R Soc Lond A Math Phys Eng Sci 466:1725–1748 The Royal Society

    Article  MathSciNet  MATH  Google Scholar 

  • Sokolov A, Goldstein RE, Feldchtein FI, Aranson IS (2009) Enhanced mixing and spatial instability in concentrated bacterial suspensions. Phys Rev E 80(3):031903

    Article  Google Scholar 

  • Stimson M, Jeffery G (1926) The motion of two spheres in a viscous fluid. Proc R Soc Lond Ser A 111(757):110–116

    Article  MATH  Google Scholar 

  • Stone HA, Samuel ADT (1996) Propulsion of microorganisms by surface distortions. Phys Rev Lett 77(19):4102–4104

    Article  Google Scholar 

  • Taylor G (1952) The action of waving cylindrical tails in propelling microscopic organisms. Proc R Soc Lond Ser A 211(1105):225–239

    Article  MathSciNet  MATH  Google Scholar 

  • Underhill PT, Hernandez-Ortiz JP, Graham MD (2008) Diffusion and spatial correlations in suspensions of swimming particles. Phys Rev Lett 100(24):248101

    Article  Google Scholar 

  • Van Haastert PJ (2011) Amoeboid cells use protrusions for walking, gliding and swimming. PLoS ONE 6(11):e27532

    Article  Google Scholar 

  • van Zijl F, Krupitza G, Mikulits W (2011) Initial steps of metastasis: cell invasion and endothelial transmigration. Rev Mutat Res 728(1):23–34

    Article  Google Scholar 

  • Wajnryb E, Mizerski KA, Zuk PJ, Szymczak P (2013) Generalization of the Rotne–Prager–Yamakawa mobility and shear disturbance tensors. J Fluid Mech 731:R5

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Q, Hu J, Othmer H (2012) Models of low reynolds number swimmers inspired by cell blebbing. In: Natural locomotion in fluids and on surfaces. Springer, Berlin, pp 185–195

  • Wang Q, Othmer HG (2015) The performance of discrete models of low Reynolds number swimmers. Math Biosci Eng 12(6):1303–1320

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Q, Othmer HG (2016) Computational analysis of amoeboid swimming at low Reynolds number. J Math Biol 72(7):1893–1926

    Article  MathSciNet  MATH  Google Scholar 

  • Welch MD (2015) Cell migration, freshly squeezed. Cell 160(4):581–582

    Article  MathSciNet  Google Scholar 

  • Wolf K, Mazo I, Leung H, Engelke K, Andrian UHV, Deryugina EI, Strongin AY, Bröcker EB, Friedl P (2003) Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 160(2):267–277

    Article  Google Scholar 

  • Wu X-L, Libchaber A (2000) Particle diffusion in a quasi-two-dimensional bacterial bath. Phys Rev Lett 84(13):3017

    Article  Google Scholar 

  • Yamakawa H (1970) Transport properties of polymer chains in dilute solution: hydrodynamic interaction. J Chem Phys 53(1):436–443

    Article  MathSciNet  Google Scholar 

  • Yeomans JM, Pushkin DO, Shum H (2014) An introduction to the hydrodynamics of swimming microorganisms. Eur Phys J Spec Topics 223(9):1771–1785

    Article  Google Scholar 

  • Zaid IM, Dunkel J, Yeomans JM (2011) Lévy fluctuations and mixing in dilute suspensions of algae and bacteria. J R Soc Interface 8(62):1314–1331

    Article  Google Scholar 

  • Zatulovskiy E, Tyson R, Bretschneider T, Kay RR (2014) Bleb-driven chemotaxis of Dictyostelium cells. J Cell Biol 204(6):1027–1044

    Article  Google Scholar 

  • Zuk P, Wajnryb E, Mizerski K, Szymczak P (2014) Rotne–Prager–Yamakawa approximation for different-sized particles in application to macromolecular bead models. J Fluid Mech 741:R5

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qixuan Wang.

Additional information

Supported in part by NSF Grants DMS 0817529 and 1311974, NIH Grants GM29123 and 54-CA-210190, and a grant from the Simons Fdn to H. G. Othmer, and by NIH Grant R01GM107264 and NSF Grant DMS1562176 to Qing Nie.

Appendices

Appendices

A Newtonian flow produced by the translation and radial expansion of a sphere

Here we derive the velocity field \(\mathbf {u} (\mathbf {x})\) of a LRN flow produced by a sphere of radius R, pulled by a force \(\mathbf {F}\) and expanding radially at a rate \(\dot{R} = \text {d} R / \text {d} t\). Due to the linearity of LRN flows, the velocity field is the sum of two terms: that resulting from the drag force—\(\mathbf {u} \{ \mathbf {F} \}\), and that resulting from the radial expansion—\(\mathbf {u} \{ \dot{R} \}\) :

$$\begin{aligned} \mathbf {u} = \mathbf {u} \{ \mathbf {F} \} + \mathbf {u} \{ \dot{R} \} \end{aligned}$$
(A.1)

The flow produced by the translation of a solid sphere is a classical result (Pozrikidis 1992). It can be represented in terms of a Stokeslet and dipole with poles at the center of the sphere that are given by

$$\begin{aligned} \mathbf {G}= & {} \dfrac{\mathbf {\mathbf {I}}}{r} + \dfrac{\mathbf {r}\mathbf {r}}{r^3} \end{aligned}$$
(A.2)
$$\begin{aligned} {\mathbf D}= & {} -\dfrac{\mathbf {I}}{ r^3} + 3\dfrac{\mathbf {r}\mathbf {r}}{r^5} \end{aligned}$$
(A.3)

where \(\mathbf {x}_0\) is the center of the sphere, \(\mathbf {r} = \mathbf {x} - \mathbf {x}_0\) and \(r = | \mathbf {r} |\). \(\mathbf G\) is called the Oseen tensor. The velocity field is then

$$\begin{aligned} u_i (\mathbf {x}) = G_{ij} (\mathbf {x}, \mathbf {x}_0) \Big ( \dfrac{3}{4} R U_j \Big ) - D_{ij} (\mathbf {x}, \mathbf {x}_0) \Big ( \dfrac{1}{4} R^3 U_j \Big ). \end{aligned}$$
(A.4)

Here \(\mathbf {U}\) is the translational velocity of the sphere, i.e., \(\mathbf {U} (t) = \dot{\mathbf {x}}_0 (t)\). The relation between the drag force \(\mathbf {F}\) and \(\mathbf {U}\) is

$$\begin{aligned} \mathbf {F} = 6 \pi \mu R \mathbf {U} \end{aligned}$$
(A.5)

Using the above one obtains the fluid velocity

$$\begin{aligned} u_i= & {} \dfrac{1}{24 \pi \mu } \Big [ 3 \Big ( \dfrac{\delta _{ij}}{r} + \dfrac{r_i r_j}{r^3} \Big ) F_j - \Big ( - \dfrac{\delta _{ij}}{r^3} + 3 \dfrac{r_i r_j}{r^5} \Big ) R^2 F_j \Big ] \\= & {} \dfrac{1}{24 \pi \mu } \Big [ 3 \Big ( \dfrac{F_i}{r} + \dfrac{(\mathbf {F} \cdot \mathbf {r}) r_i}{r^3} \Big ) + \Big ( \dfrac{F_i}{r^3} - 3 \dfrac{(\mathbf {F} \cdot \mathbf {r}) r_i}{r^5} \Big ) R^2\Big ] \\= & {} \dfrac{1}{24 \pi \mu r} \Big [ \Big ( 3 + \dfrac{R^2}{r^2} \Big ) F_i + 3 (\dfrac{1}{r^2} - \dfrac{R^2}{r^4}) (\mathbf {F} \cdot \mathbf {r}) r_i \Big ] \end{aligned}$$

or alternatively

$$\begin{aligned} \mathbf {u} \{ \mathbf {F} \} = \dfrac{1}{24 \pi \mu r} \Big [ \Big ( 3 + \dfrac{R^2}{r^2} \Big ) \mathbf {F} + 3 \Big (1 - \dfrac{R^2}{r^2} \Big ) (\mathbf {F} \cdot \hat{\mathbf {r}}) \hat{\mathbf {r}} \Big ] \end{aligned}$$
(A.6)

where \(\hat{\mathbf {r}} = \mathbf {r} / |\mathbf {r}|\).

The velocity field \(\mathbf {u} \{ \dot{R} \}\) of the flow produced by a radially expanding sphere can be represented by a point source with pole at the center \(\mathbf {x}_0\) of the sphere, and thus has the form

$$\begin{aligned} \mathbf {u} = \alpha \dfrac{ \hat{\mathbf {r}}}{r^2} \end{aligned}$$
(A.7)

where the strength of the source (\(\alpha \)) is a constant to be determined. The no-slip boundary condition on the sphere surface implies that

$$\begin{aligned} \mathbf {u} (\mathbf {x}) = \dfrac{\text {d} R}{\text {d} t} \hat{\mathbf {r}}. \end{aligned}$$
(A.8)

From (A.7A.8) we find that \(\alpha = \dot{R} R^2\), and therefore

$$\begin{aligned} \mathbf {u} \{ \dot{R} \} = \dot{R} \Big ( \dfrac{R}{r} \Big )^2 \hat{\mathbf {r}}. \end{aligned}$$
(A.9)

If we represent it in terms of the sphere volume \(v = 4 \pi R^3 /3\) this reads

$$\begin{aligned} \mathbf {u} \{ \dot{R} \} = \dfrac{\dot{v}}{4 \pi r^2} \hat{\mathbf {r}} \end{aligned}$$
(A.10)

This leads to the combined flow Eq. (3.16):

$$\begin{aligned} \mathbf {u} \big ( \mathbf {r}; R, \mathbf {F}, \dot{R} \big ) = \dfrac{1}{24 \pi \mu r} \Big [ \big ( 3 + \dfrac{R^2}{r^2} \big ) \mathbf {F} + 3 \big ( 1 - \dfrac{R^2}{r^2} \big ) \big ( \mathbf {F} \cdot \widehat{ \mathbf {r} } \big ) \widehat{\mathbf {r}} \Big ] +\dot{R} \Big ( \dfrac{R}{r} \Big )^2 \widehat{\mathbf {r}}. \end{aligned}$$

B Accuracy of \(U_i^{(e)}\) after incorporating the second reflection

Next we determine how a second reflection contributes to the rigid motions of two radially expanding spheres.

0th reflection We consider two spheres with radii \(R_1 (t)\) and \(R_2 (t)\) resp., centered at \(\mathbf {x}_1 (t)\) and \(\mathbf {x}_2 (t)\) so that \(\mathbf {x}_2 - \mathbf {x}_1\) points in the \(\mathbf {e}_x\) direction. The radial expansion of the \(i\hbox {th}\) sphere alone generates a flow

$$\begin{aligned} \mathbf {u}_i^{(0)} ( \mathbf {x}) = R_i^2 \dot{R}_i \dfrac{\mathbf {x} - \mathbf {x}_i}{ | \mathbf {x} - \mathbf {x}_i |^3} \end{aligned}$$
(B.1)

and the rigid motion of the sphere vanishes

$$\begin{aligned} \mathbf {U}_i^{(0)} = \mathbf {0}, \quad \mathbf {\omega }_i^{(0)} = \mathbf {0}. \end{aligned}$$
(B.2)

1st Reflection. Next we put sphere 1 into the flow \(\mathbf {u}_2\) generated by the radially expanding sphere 2. We calculate the resulting translational velocity \(\mathbf {U}_1^{(1)}\), angular velocity \(\mathbf {\omega }_1^{(1)}\), and the stresslet \(\mathbf {S}_1^{(1)}\), from which we obtain the velocity field \(\mathbf {u}_{21} (\mathbf {x})\).

Translational velocity \(\mathbf {U}_1^{(1)}\).

$$\begin{aligned} \mathbf {U}_1^{(1)}= & {} \Big ( 1 + \dfrac{R_1^2}{6} \nabla ^2 \Big ) \mathbf {u}_2^{(0)} \Big |_{\mathbf {x} = \mathbf {x}_1} = R_2^2 \dot{R}_2 \Big [ \dfrac{\mathbf {x}_1 - \mathbf {x}_2}{ | \mathbf {x}_1 - \mathbf {x}_2 |^3} + \dfrac{R_1^2}{6} \nabla ^2 \Big ( \dfrac{\mathbf {x} - \mathbf {x}_2}{ | \mathbf {x} - \mathbf {x}_2 |^3} \Big ) \Big |_{\mathbf {x} = \mathbf {x}_1} \Big ] \\= & {} R_2^2 \dot{R}_2 \Big [ - \dfrac{ \mathbf {e}_z }{ l^2} + \dfrac{R_1^2}{6} \nabla ^2 \Big ( \dfrac{\mathbf {x} - \mathbf {x}_2}{ | \mathbf {x} - \mathbf {x}_2 |^3} \Big ) \Big |_{\mathbf {x} = \mathbf {x}_1} \Big ] \end{aligned}$$

Letting \(\mathbf {r} = \mathbf {x} - \mathbf {x}_2 \) and \(r = |\mathbf {r}|\), we must calculate

$$\begin{aligned} \nabla ^2 \Big ( \dfrac{\mathbf {r}}{r^3} \Big ) = \partial _k \partial _k \dfrac{r_i}{r^3} \end{aligned}$$

Since

$$\begin{aligned} \partial _k \Big ( \dfrac{1}{r^n} \Big ) = - \dfrac{n r_k}{r^{n+2}} \end{aligned}$$

we have

$$\begin{aligned} \partial _k \Big ( \dfrac{r_i}{r^3} \Big )= & {} \dfrac{\delta _{ik}}{r^3} - \dfrac{3 r_i r_k}{r^5} \\ \partial _k \partial _k \Big ( \dfrac{r_i}{r^3} \Big )= & {} - \dfrac{3 \delta _{ik} r_k}{r^5} - \dfrac{3 \delta _{ik} r_k}{r^5} - \dfrac{3 r_i \partial _k r_k}{r^5} + \dfrac{15 r_i r_k r_k}{r^7} = 0. \end{aligned}$$

Thus

$$\begin{aligned} \nabla ^2 \Big ( \dfrac{\mathbf {r}}{r^3} \Big ) = \mathbf {0} \end{aligned}$$

and

$$\begin{aligned} \mathbf {U}_1^{(1)} = - \dfrac{R_2^2 \dot{R}_2}{l^2} \mathbf {e}_x \end{aligned}$$
(B.3)

Angular velocity \(\mathbf {\omega }_1^{(1)}\).

$$\begin{aligned} \mathbf {\omega }_1^{(1)} = \dfrac{1}{2} \nabla \times \mathbf {u}_2^{(0)} \Big |_{\mathbf {x} = \mathbf {x}_1} = \mathbf {0} \end{aligned}$$
(B.4)

Stresslet \(\mathbf {S}_1^{(1)}\). The rate of deformation that results from \(\mathbf {u}_2\) is

$$\begin{aligned} \mathbf {E}_2^{(0)}= & {} \dfrac{1}{2} \Big [ \nabla \mathbf {u}_2^{(0)} + \big ( \nabla \mathbf {u}_2^{(0)} \big )^T \Big ] - \dfrac{1}{3} \mathbf {I} \Big ( \nabla \cdot \mathbf {u}_2^{(0)} \Big ) \\= & {} \dot{R}_2 R_2^2 \Big [ \dfrac{1}{2} \Big ( \nabla \dfrac{\hat{\mathbf {r}}}{r^2} + \big ( \nabla \dfrac{\hat{\mathbf {r}}}{r^2} \big )^T \Big ) - \dfrac{1}{3} \mathbf {I} \Big ( \nabla \cdot \dfrac{\hat{\mathbf {r}}}{r^2} \Big ) \Big ] \end{aligned}$$

where \(\hat{\mathbf {r}} = \mathbf {r}/r\). Using spherical coordinates, we have

$$\begin{aligned} \nabla \dfrac{\hat{\mathbf {r}}}{r^2}= & {} \Big ( \hat{\mathbf {r}} \dfrac{\partial }{\partial r} + \dfrac{1}{r} \hat{\mathbf {\theta }} \dfrac{\partial }{\partial \theta } + \dfrac{1}{r \sin \theta } \hat{\mathbf {\phi }} \dfrac{\partial }{\partial \phi } \Big ) \Big ( \dfrac{\hat{\mathbf {r}}}{r^2} \Big ) = \Big ( \dfrac{\partial }{\partial r} \dfrac{1}{r^2} \Big ) \hat{\mathbf {r}} \hat{\mathbf {r}} = - \dfrac{2}{r^3} \hat{\mathbf {r}} \hat{\mathbf {r}} \\ \nabla \cdot \dfrac{\hat{\mathbf {r}}}{r^2}= & {} \dfrac{\partial }{\partial r} \dfrac{1}{r^2} + \dfrac{2}{r} \dfrac{1}{r^2} = 0. \end{aligned}$$

Thus

$$\begin{aligned} \mathbf {E}_2^{(0)} = - \dfrac{2 R_2^2 \dot{R}_2}{r^3} \hat{\mathbf {r}} \hat{\mathbf {r}} = - \dfrac{2 R_2^2 \dot{R}_2}{r^5} \mathbf {r} \mathbf {r}, \end{aligned}$$
(B.5)

and the stresslet is given by

$$\begin{aligned} \mathbf {S}_1^{(1)}= & {} \dfrac{20}{3} \pi \mu R_1^3 \Big ( 1 + \dfrac{R_1^2}{10} \nabla ^2 \Big ) \mathbf {E}_2^{(0)} \Big |_{\mathbf {x} = \mathbf {x}_1} \\= & {} - \dfrac{40}{3} \pi \mu R_1^3 R_2^2 \dot{R}_2 \Big [ \dfrac{\mathbf {e}_x \mathbf {e}_x}{l^3} + \dfrac{R_1^2}{10} \nabla ^2 \Big ( \dfrac{\mathbf {r} \mathbf {r}}{r^5} \Big ) \Big |_{\mathbf {x} = \mathbf {x}_1} \Big ] \end{aligned}$$

We need to calculate

$$\begin{aligned} \nabla ^2 \Big ( \dfrac{\mathbf {r} \mathbf {r}}{r^5} \Big )= & {} \partial _k \partial _k \Big ( \dfrac{ r_i r_j }{r^5} \Big )\\ \partial _k \Big ( \dfrac{ r_i r_j }{r^5} \Big )= & {} \dfrac{\delta _{ik} r_j}{r^5} + \dfrac{\delta _{jk} r_i}{r^5} - \dfrac{5 r_i r_j r_k}{r^7} \\ \partial _k \partial _k \Big ( \dfrac{ r_i r_j }{r^5} \Big )= & {} \Big ( \dfrac{\delta _{ik} \delta _{jk}}{r^5} - \dfrac{5 \delta _{ik} r_j r_k}{r^7} \Big ) + \Big ( \dfrac{\delta _{jk} \delta _{ik}}{r^5} - \dfrac{5 \delta _{jk} r_i r_k}{r^7} \Big ) \\&+ \,\Big ( - \dfrac{5 \delta _{ik} r_j r_k}{r^7} - \dfrac{5 \delta _{jk} r_i r_k}{r^7} - \dfrac{5 r_i r_j \partial _k r_k}{r^7} + \dfrac{35 r_i r_j r_k r_k}{r^9} \Big ) = \dfrac{2 \delta _{ij}}{r^5} \end{aligned}$$

Thus

$$\begin{aligned} \mathbf {S}_1^{(1)} = - \dfrac{40}{3} \pi \mu R_1^3 R_2^2 \dot{R}_2 \Big [ \dfrac{\mathbf {e}_x \mathbf {e}_x}{l^3} + \dfrac{R_1^2}{5 l^5} \mathbf {I} \Big ] \end{aligned}$$
(B.6)

Finally, the velocity field \(\mathbf {u}_{21}^{(1)} (\mathbf {x})\) is given by

$$\begin{aligned} \mathbf {u}_{21}^{(1)} (\mathbf {x}) = \Big ( \mathbf {S}_1^{(1)} \cdot \nabla \Big ) \cdot \dfrac{\mathbf {G}(\mathbf {x} - \mathbf {x_1})}{8 \pi \mu } + \cdots \end{aligned}$$
(B.7)

From Eqs. (B.6A.2) we have that near \(\mathbf {x}_1\),

$$\begin{aligned} \mathbf {S}_1^{(1)} \sim O \Big ( \dfrac{1}{l^3} \Big ), \quad \mathbf {G} \sim O \Big ( \dfrac{1}{l} \Big ) \end{aligned}$$

and thus the velocity near \(\mathbf {x}_1\) scales as \(\mathbf {u}_{21}^{(1)} \sim O (l^{-5})\).

2nd Reflection. Now we reflect once again and consider sphere 1 immersed in the flow \(\mathbf {u}_{12}^{(1)}\). The translational velocity \(\mathbf {U}_1^{(2)}\) that results is given by

$$\begin{aligned} \mathbf {U}_1^{(2)} = \Big ( 1 + \dfrac{R_1^2}{6} \nabla ^2 \Big ) \mathbf {u}_{12}^{(1)} \Big |_{\mathbf {x} = \mathbf {x}_1} \end{aligned}$$
(B.8)

From the discussion of the first reflection we know that near \(\mathbf {x}_1\) the velocity field \(\mathbf {u}_{12}^{(1)}\) is \(O (l^{-5})\), and thus \(\mathbf {U}_1^{(2)} \sim O (l^{-5})\) as well.

C Extended analysis and computation of a PMPY of small separation.

1.1 C.1 Results with the second reflection involved and accurate up to \(O (\delta ^5)\).

From Sect. 3.2, the translational velocities of the spheres after two reflections can be approximated as:

$$\begin{aligned} U_1= & {} \dfrac{F_1}{6 \pi \mu R_1} \Big ( 1 - \dfrac{15R_1 R_2^3}{4 l^4} \Big ) + \dfrac{F_2}{4 \pi \mu l} \Big ( 1 - \dfrac{R_1^2 + R_2^2}{3 l^2} \Big ) - \dot{R}_2 \Big ( \dfrac{R_2}{l} \Big )^2 + O \big ( \dfrac{1}{l^5} \big ) \\ U_2= & {} \dfrac{F_2}{6 \pi \mu R_2} \Big ( 1 - \dfrac{15R_1^3 R_2}{4 l^4} \Big ) + \dfrac{F_1}{4 \pi \mu l} \Big ( 1 - \dfrac{R_1^2 + R_2^2}{3 l^2} \Big ) + \dot{R}_1 \Big ( \dfrac{R_1}{l} \Big )^2 + O \big ( \dfrac{1}{l^5} \big ) \end{aligned}$$

After non-dimensionalization, they read:

$$\begin{aligned} U_1= & {} \dfrac{F_1}{R_1} \Big ( 1 - \dfrac{15R_1 R_2^3}{4 l^4} \delta ^4 \Big ) + \dfrac{3 F_2}{2l} \delta \Big ( 1 - \dfrac{R_1^2 + R_2^2}{3 l^2} \delta ^2 \Big ) - \delta ^2 \Big ( \dfrac{R_2}{l} \Big )^2 \zeta _2 + O (\delta ^5) \\ U_2= & {} \dfrac{F_2}{R_2} \Big ( 1 - \dfrac{15R_1^3 R_2}{4 l^4} \delta ^4 \Big ) + \dfrac{3 F_1}{2l} \delta \Big ( 1 - \dfrac{R_1^2 + R_2^2}{3 l^2} \delta ^2 \Big ) + \delta ^2 \Big ( \dfrac{R_1}{l} \Big )^2 \zeta _1 + O (\delta ^5) \end{aligned}$$

and the coefficient matrix in the system Eq. (3.24) becomes

$$\begin{aligned} \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} -1 &{} 0 &{} \alpha _1 &{} \varGamma \\ 0 &{} -1 &{} \varGamma &{} \alpha _2 \\ 1 &{} -1 &{} 0 &{} 0 \\ 0&{} 0&{} 1 &{} 1 \end{array}\right) \end{aligned}$$
(B.1)

where

$$\begin{aligned} \alpha _1= & {} \dfrac{1}{R_1} \Big ( 1 - \dfrac{15R_1 R_2^3}{4 l^4} \delta ^4 \Big ),\\ \alpha _2= & {} \dfrac{1}{R_2} \Big ( 1 - \dfrac{15R_1^3 R_2}{4 l^4} \delta ^4 \Big ),\\ \varGamma= & {} \delta \dfrac{3}{2l} \Big ( 1 - \dfrac{R_1^2 + R_2^2}{3 l^2} \delta ^2 \Big ) \end{aligned}$$

We consider the stroke in Eq. (3.35) again, but with solution obtained with the first reflection [Eq. (3.24), Fig. 4 black dots] or with both the first and the leading order term from second reflections [Eq. (3.24) with coefficient matrix in Eq. (B.1), Fig. 4 green crosses]—the former is truncated from the \(\delta ^4\) term while the latter is from the \(\delta ^5\) term. For small separation of the PMPY with \(l_0 = 7, \ \delta = 0.54\), simulation of the scaled translation and power are shown in Fig. 4, from which we see them match well. For this system, the first reflection is correct to \(O (\delta ^4)\) where \(\delta ^4 \sim 8.5E-2\), while with the leading order term from the second reflection included, it is correct to \(O (\delta ^5)\) where \(\delta ^5 \sim 4.6E-2\). However, in the simulation, the difference between the net translation after one cycle (X(1)) obtained by the two approximations is:

$$\begin{aligned} | X_{\text {1stRef}} (1) - X_{\text {2ndRef}} (1) | \sim 8.9 E-3 \end{aligned}$$

When comparing with \(\delta \), this difference gives the estimation of

$$\begin{aligned} | X_{\text {1stRef}} (1) - X_{\text {2ndRef}} (1) | \sim \delta ^{7.7} \end{aligned}$$

This implies that with \(\delta \) as large as 0.54, the solution obtained from the first reflection is accurate to the order of \(O (10^{-3})\) which approximates \(O (\delta ^{7.7})\).

1.2 C.2 Comparing the contributions of \(P_D\) and \(P_V\) to the power P.

As is discussed in Sect. 3.3, the power expended to propel a PMPY consists of two parts: \(P_D\) that results from the drag force on the spheres, and \(P_V\) that results from the radial expansion of the spheres. In addition, Eq. (3.31) shows that the higher-order corrections to P only exists in \(P_D\). We repeat the simulations in Fig. 3 with different values of \(l_0\) and show the results for \(P_D\) and \(P_V\) in Fig. 17, where \(P_D\) and \(P_V\) calculated by the first reflection are shown by green and blue solid lines, resp., and \(P_D\) calculated by Avron’s asymptotic approximation is shown by black dots.

Fig. 17
figure 17

Comparing the contributions of \(P_D\) and \(P_V\) to the power P. Simulations are set up the same as in Fig. 3, with \(l_0 = 7,12, 60 \,\upmu \hbox {m}\) (color figure online)

D Calculation of \({\varvec{\varOmega }}_{3,i}^{(1)}\)

The angular velocity of sphere 3 (i.e., the free-floating sphere) \( {\varvec{\varOmega }}_{3,i}^{(1)}\) consists of two parts: \( {\varvec{\varOmega }}_{3,i}^{(1,f)}\) that results from the drag force on sphere i, and \( {\varvec{\varOmega }}_{3,i}^{(1,e)}\) that results from the expansion of sphere i. Here we calculate them separately.

First, \( {\varvec{\varOmega }}_{3,i}^{(1,e)}\), which results from the flow generated by the expansion of sphere i is:

$$\begin{aligned} \mathbf {u}_i^{(0,e)} = R_i^2 \dot{R}_i \dfrac{\mathbf {x} - \mathbf {x}_i}{|\mathbf {x} - \mathbf {x}_i|^3}, \end{aligned}$$

and therefore

$$\begin{aligned} {\varvec{\varOmega }}_{3,i}^{(1,e)} = \dfrac{1}{2} \nabla \times \mathbf {u}_i^{(e)} \Big |_{\mathbf {x} = \mathbf {x}_3} = \dfrac{ R_i^2 \dot{R}_i }{2} \nabla \times \Big ( \dfrac{\mathbf {x} - \mathbf {x}_i}{|\mathbf {x} - \mathbf {x}_i|^3} \Big ) \Big |_{\mathbf {x} = \mathbf {x}_3}. \end{aligned}$$
(D.1)

Let \(\mathbf {r} = \mathbf {x} - \mathbf {x}_i\) and \(r = |\mathbf {x} - \mathbf {x}_i| \), then the antisymmetric part in Eq. (D.1) is

$$\begin{aligned} \partial _j \Big ( \dfrac{r_k}{r^3} \Big ) - \partial _k \Big ( \dfrac{r_j}{r^3} \Big ) = \Big ( \dfrac{\delta _{jk}}{r^3} - \dfrac{3 r_j r_k}{r^5} \Big ) - \Big ( \dfrac{\delta _{kj}}{r^3} - \dfrac{3 r_k r_j}{r^5} \Big ) = 0 \end{aligned}$$

and therefore \( {\varvec{\varOmega }}_{3,i}^{(1,e)} = 0\).

Next, \( {\varvec{\varOmega }}_{3,i}^{(1,f)}\), which results from the flow generated by the drag force \(\mathbf {F}_i = F_i \mathbf {e}_x\) on sphere i, is given by

$$\begin{aligned} {\varvec{\varOmega }}_{3,i}^{(1,f)}= & {} \dfrac{1}{2} \nabla \times \mathbf {u} \{ \mathbf {F}_i \} \Big |_{\mathbf {x} = \mathbf {x}_3} \\= & {} \dfrac{1}{16 \pi \mu } \nabla \times \Big [ \Big ( \dfrac{1}{r} + \dfrac{1}{3 r^3} \Big )F_i \mathbf {e}_x + \Big ( \dfrac{1}{r} - \dfrac{1}{ r^3} \Big ) (F_i \mathbf {e}_x \cdot \dfrac{\mathbf {r}}{r}) \dfrac{\mathbf {r}}{r} \Big ] \Big |_{\mathbf {x} = \mathbf {x}_3} \\= & {} \dfrac{F_i}{16 \pi \mu } \nabla \times \Big [ \Big ( \dfrac{1}{r} + \dfrac{1}{3 r^3} \Big ) \mathbf {e}_x + \Big ( \dfrac{1}{r} - \dfrac{1}{ r^3} \Big ) \dfrac{r_x \mathbf {r}}{r^2} \Big ]. \end{aligned}$$

Since

$$\begin{aligned} \nabla \times \Big ( \dfrac{1}{r^n} \mathbf {e}_x \Big )= & {} - \dfrac{n r_z}{r^{n+2}} \mathbf {e}_y + \dfrac{n r_y}{r^{n+2}} \mathbf {e}_z \\ \nabla \times \Big (\dfrac{r_x}{r^n} \mathbf {r} \Big )= & {} - \dfrac{r_z}{r^n} \mathbf {e}_y + \dfrac{r_y}{r^n} \mathbf {e}_z \end{aligned}$$

we have

$$\begin{aligned} {\varvec{\varOmega }}_{3,i}^{(1,f)} = \dfrac{F_i}{8 \pi \mu r^3} \Big [ - r_z \mathbf {e}_y + r_y \mathbf {e}_z \Big ] \Big |_{\mathbf {r} = \mathbf {x}_3 - \mathbf {x}_i} = \dfrac{F_i}{8 \pi \mu l_{i3}^3} \big ( \mathbf {x}_3 - \mathbf {x}_i \big )_y \mathbf {e}_z \end{aligned}$$
(D.2)

and therefore

$$\begin{aligned} {\varvec{\varOmega }}_3^{(1)} = \sum _{i=1,2} {\varvec{\varOmega }}_{3,i}^{(1,f)} + {\varvec{\varOmega }}_{3,i}^{(1,e)} = \sum _{i=1,2} \dfrac{F_i}{8 \pi \mu l_{i3}^3} \big ( \mathbf {x}_3 - \mathbf {x}_i \big )_y \mathbf {e}_z. \end{aligned}$$
(D.3)

E Numerical scheme of two PMPY models

The following numerical scheme is written in terms of unscaled variables.

When the two PMPY models both lie along the x-axis, and the spheres are numbered 1, 2, 3, 4 from the negative to the positive x-direction, the Eqs. (5.15.9) reduce to

$$\begin{aligned} \left( \begin{array}{l@{\quad }l} A_{11} &{} A_{12} \\ A_{21} &{} A_{22} \end{array} \right) \left( \begin{array}{l} \mathbf {U} \\ \mathbf {F} \end{array} \right) = \left( \begin{array}{l} \mathbf {B}_1 \\ \mathbf {B}_2 \end{array} \right) \end{aligned}$$
(E.1)

where

$$\begin{aligned} \mathbf {U} = \left( \begin{array}{l} U_1\\ U_2\\ U_3\\ U_4 \end{array} \right) , \quad \mathbf {F} = \mu ^{-1} \left( \begin{array}{l} F_1\\ F_2\\ F_3\\ F_4 \end{array}\right) . \end{aligned}$$

Here \(A_{11} = - I_4\), where \(I_4\) is the \(4 \times 4\) identity matrix, \(A_{12} = (a_{ij})\) is a symmetric \(4 \times 4\) matrix, with

$$\begin{aligned} a_{ii} = \dfrac{1}{6 \pi R_i} , \quad a_{ij} = \dfrac{1}{4 \pi l_{ij}} \Big ( 1 - \dfrac{R_i^2 + R_j^2}{3 l_{ij}^2} \Big ) \end{aligned}$$
(E.2)

and

$$\begin{aligned} \big ( A_{21} \ A_{22} \big ) = \left( \begin{array}{r@{\quad }r@{\quad }r@{\quad }r@{\quad }r@{\quad }r@{\quad }r@{\quad }r} 1 &{} -1 &{} 0 &{} 0&{} 0 &{} 0&{} 0&{} 0 \\ 0&{} 0&{} 1 &{} -1 &{} 0 &{} 0&{} 0&{} 0 \\ 0 &{} 0&{} 0&{} 0 &{} 1 &{} 1 &{} 0 &{} 0 \\ 0 &{} 0&{} 0&{} 0 &{} 0 &{} 0&{} 1 &{} 1 \end{array} \right) . \end{aligned}$$

\(\mathbf {B}_1 \in \mathbb {R}^4\), is given by

$$\begin{aligned} (\mathbf {B}_1)_i = - \sum _{j \ne i} \text {sign} (i-j) \dot{R}_j \Big ( \dfrac{R_j}{l_{ij}} \Big )^2 \end{aligned}$$

and

$$\begin{aligned} \mathbf {B}_2 = \left( \begin{array}{l} - \dot{l}_{12} \\ - \dot{l}_{34} \\ 0\\ 0 \end{array} \right) . \end{aligned}$$

With the second reflection considered, the leading term in \(\mathbf {U}_i^{(2)}\) is of order \(\delta ^4\), which results from the drag forces and can be computed from the following equations:

$$\begin{aligned} \mathbf {U}_i^{(2,f)} = \Big ( 1 + \dfrac{R_i^2}{6} \Big ) \nabla ^2 \sum _{j,k}^{k \ne i,j} \mathbf {u}_{jk}^{(1)} \Big |_{\mathbf {x} = \mathbf {x}_i} \end{aligned}$$

where

$$\begin{aligned} \mathbf {u}_{jk}^{(1)} = \big ( \mathbf {S}_{k,j}^{(1)} \cdot \nabla \big ) \cdot \dfrac{\mathbf {G} ( \mathbf {x} - \mathbf {x}_k)}{ 8 \pi \mu } + \cdots \end{aligned}$$

and the stresslet \(\mathbf {S}_{k,j}^{(1)} \) is

$$\begin{aligned} \mathbf {S}_{k,j}^{(1)} = \dfrac{20}{3} \pi \mu R_k^3 \big ( 1 + \dfrac{R_k^2}{10} \nabla ^2 \big ) \mathbf {E}^{(0)}_j \Big |_{\mathbf {x} = \mathbf {x}_k} \end{aligned}$$

where \(\mathbf {E}^{(0)}_j\) is the rate of deformation resulting from \(\mathbf {u}_j\).

To compute \(\mathbf {U}_i^{(2,f)}\), we follow the computation framework provided in (Kim and Karrila 1991), with the algebra reduced from the system geometry. First we have

$$\begin{aligned} \mathbf {S}_{k,j}^{(1)}= & {} \Big [ - \dfrac{5}{2} \dfrac{R_k^3}{l_{kj}^2} + \dfrac{3}{2} \dfrac{R_k^5}{l_{kj}^4} \Big ( 1 + \dfrac{5}{3} \dfrac{R_j^2}{R_k^2} \Big ) \Big ] \big ( \mathbf {d}_{jk} \mathbf {d}_{jk} - \dfrac{1}{3} \mathbf {I} \big ) \mathbf {d}_{jk} \cdot \mathbf {F}_j \\&- \,\dfrac{1}{2} \dfrac{R_k^5}{l_{kj}^4} \Big ( 1 + \dfrac{5}{3} \dfrac{R_j^2}{R_k^2} \Big ) \Big ( \mathbf {F}_j \mathbf {d}_{jk} + \mathbf {d}_{jk} \mathbf {F}_j - 2 \mathbf {d}_{jk} \mathbf {d}_{jk} \mathbf {d}_{jk} \cdot \mathbf {F}_j \Big ) \end{aligned}$$

where

$$\begin{aligned} \mathbf {d}_{jk} = \dfrac{\mathbf {x}_k - \mathbf {x}_j}{l_{kj}} = \text {sign} (k - j) \mathbf {e}_x, \quad \mathbf {F}_j = F_j \mathbf {e}_x \end{aligned}$$

thus

$$\begin{aligned} \mathbf {S}_{k,j}^{(1)} = F_j \text {sign} (k-j) \Big [ - \dfrac{5}{2} \dfrac{R_k^3}{l_{kj}^2} + \dfrac{3}{2} \dfrac{R_k^5}{l_{kj}^4} \Big ( 1 + \dfrac{5}{3} \dfrac{R_j^2}{R_k^2} \Big ) \Big ] \big ( \mathbf {e}_x \mathbf {e}_x - \dfrac{1}{3} \mathbf {I} \big ) \end{aligned}$$

Let

$$\begin{aligned} \varLambda _{k,j} = \text {sign} (k-j) \Big [ - \dfrac{5}{2} \dfrac{R_k^3}{l_{kj}^2} + \dfrac{3}{2} \dfrac{R_k^5}{l_{kj}^4} \Big ( 1 + \dfrac{5}{3} \dfrac{R_j^2}{R_k^2} \Big ) \Big ] \end{aligned}$$

after some direct calculation, we obtain

$$\begin{aligned} \mathbf {u}_{jk}^{(1)} =\big [ F_j \varLambda _{k,j} \big ( \mathbf {e}_x \mathbf {e}_x - \dfrac{1}{3} \mathbf {I} \big ) \cdot \nabla \big ] \cdot \dfrac{\mathbf {G} (\mathbf {x} - \mathbf {x}_k)}{ 8 \pi \mu } = \dfrac{F_j \varLambda _{k,j}}{ 8 \pi \mu } \Big ( \dfrac{\mathbf {r}}{r^3} - \dfrac{3 r_x^2}{r^5} \mathbf {r} \Big ) \end{aligned}$$

thus

$$\begin{aligned}&\Big ( 1 + \dfrac{R_i^2}{6} \Big ) \nabla ^2 \mathbf {u}_{jk}^{(1)} \Big |_{\mathbf {x} = \mathbf {x}_i} \\&\quad = \dfrac{F_j \varLambda _{k,j}}{ 8 \pi \mu } \Big [ \dfrac{\mathbf {x}_i {-} \mathbf {x}_k}{ |\mathbf {x}_i {-} \mathbf {x}_k |^3} {-} \dfrac{3 \big ( (\mathbf {x}_i - \mathbf {x}_k) \cdot \mathbf {e}_x \big )^2}{|\mathbf {x}_i - \mathbf {x}_k |^5} (\mathbf {x}_i - \mathbf {x}_k)+ \dfrac{R_i^2}{6} \nabla ^2 \Big ( \dfrac{\mathbf {r}}{r^3} - \dfrac{3 r_x^2}{r^5} \mathbf {r} \Big ) \Big |_{\mathbf {x} = \mathbf {x}_i} \Big ] \\&\quad \sim \dfrac{F_j }{ 8 \pi \mu } \text {sign} (k-j) \Big ( - \dfrac{5}{2} \dfrac{R_k^3}{l_{kj}^2} + O \big ( \dfrac{1}{l_{kj}^4} \big ) \Big )\Big ( - \dfrac{2 \text {sign} (i-k)}{l_{ik}^2} \mathbf {e}_x + O \big ( \dfrac{1}{l_{ik}^4} \big ) \Big ) \\&\quad = \dfrac{F_j }{ 8 \pi \mu } \text {sign} (k-j) \text {sign} (i-k) \dfrac{5 R_k^3}{l_{kj}^2 l_{ik}^2} \mathbf {e}_x + O \big ( \dfrac{1}{l^6} \big ) \end{aligned}$$

Finally we get

$$\begin{aligned} \mathbf {U}_i^{(2,f)}= & {} \Big ( 1 + \dfrac{R_i^2}{6} \Big ) \nabla ^2 \sum _{j,k}^{k \ne i,j} \mathbf {u}_{jk}^{(1)} \Big |_{\mathbf {x} = \mathbf {x}_i} \\= & {} \sum _j \dfrac{F_j }{ 8 \pi \mu } \sum _{k \ne i,j} \text {sign} (k-j) \text {sign} (i-k) \dfrac{5 R_k^3}{l_{kj}^2 l_{ik}^2} \mathbf {e}_x + O \big ( \dfrac{1}{l^6} \big ) \end{aligned}$$

after non-dimensionalization, it gives

$$\begin{aligned} \mathbf {U}_i^{(2,f)}= & {} \Big ( 1 + \dfrac{R_i^2}{6} \Big ) \nabla ^2 \sum _{j,k}^{k \ne i,j} \mathbf {u}_{jk}^{(1)} \Big |_{\mathbf {x} = \mathbf {x}_i} \\= & {} \sum _j \dfrac{15}{4} F_j \delta ^4 \sum _{k \ne i,j} \text {sign} (k-j) \text {sign} (i-k) \dfrac{ R_k^3}{l_{kj}^2 l_{ik}^2} \mathbf {e}_x + O \big ( \delta ^6 \big ) \end{aligned}$$

Our analysis in Appendix B shows that \(\mathbf {U}_i^{(2,e)} \sim O (\delta ^5)\), therefore

$$\begin{aligned} \mathbf {U}_i^{(2)} = \sum _j \dfrac{15}{4} F_j \delta ^4 \sum _{k \ne i,j} \text {sign} (k-j) \text {sign} (i-k) \dfrac{ R_k^3}{l_{kj}^2 l_{ik}^2} \mathbf {e}_x + O \big ( \delta ^5 \big ) \end{aligned}$$

With the leading terms from the second reflection added to the system, the algorithm given at the beginning of this part is modified as \(A_{12} = (a_{ij} + \widetilde{a}_{ij})\), where \(a_{ij}\) is given by Eq. (E.2) and

$$\begin{aligned} \widetilde{a}_{ij} = \dfrac{5}{8 \pi } \sum _{k \ne i,j} \text {sign} (k-j) \text {sign} (i-k) \dfrac{ R_k^3}{l_{kj}^2 l_{ik}^2} \end{aligned}$$

F Asymptotic analysis of the three systems consisting of two hobbled PMPYs

For simplicity, we denote the distance between any two spheres i and j by \(l_{ij}\). For example, \(l_{13} = l_{12} + l_{23}\).

1.1 F.1 System A (two dumb-bells) with controls in \((\dot{l}_I, \dot{l}_{II})\)

The asymptotic behavior of the velocity of the spheres is

$$\begin{aligned} U_1\sim & {} \dfrac{F_1}{6 \pi \mu R_1} + \dfrac{F_2}{4 \pi \mu l_{12}} + \dfrac{F_3}{4 \pi \mu l_{13}} + \dfrac{F_4}{4 \pi \mu l_{14}} \\ U_2\sim & {} \dfrac{F_1}{4 \pi \mu l_{12}} + \dfrac{F_2}{6 \pi \mu R_2} + \dfrac{F_3}{4 \pi \mu l_{23}} + \dfrac{F_4}{4 \pi \mu l_{24}}\\ U_3\sim & {} \dfrac{F_1}{4 \pi \mu l_{13}} + \dfrac{F_2}{4 \pi \mu l_{23}} + \dfrac{F_3}{6 \pi \mu R_3} + \dfrac{F_4}{4 \pi \mu l_{34}}\\ U_4\sim & {} \dfrac{F_1}{4 \pi \mu l_{14}} + \dfrac{F_2}{4 \pi \mu l_{24}} + \dfrac{F_3}{4 \pi \mu l_{34}} + \dfrac{F_4}{6 \pi \mu R_4} \end{aligned}$$

with relations and constraints

$$\begin{aligned} U_2 - U_1= & {} \dot{l}_{12} = \xi _{I}, \quad U_4 - U_3 = \dot{l}_{34} = \xi _{II} \\ F_1 + F_2= & {} 0, \quad F_3 + F_4 = 0. \end{aligned}$$

After scaling with hat notation omitted, the system becomes

$$\begin{aligned} U_1\sim & {} \dfrac{F_1}{R_1} + \dfrac{3}{2} \Big [ \dfrac{F_2}{l_{12}} + \dfrac{F_3}{l_{13}} + \dfrac{F_4}{l_{14}} \Big ] \delta \\ U_2\sim & {} \dfrac{F_2}{R_2} + \dfrac{3}{2} \Big [ \dfrac{F_1}{l_{12}} + \dfrac{F_3}{l_{23}} + \dfrac{F_4}{l_{24}} \Big ] \delta \\ U_3\sim & {} \dfrac{F_3}{R_3} + \dfrac{3}{2} \Big [ \dfrac{F_1}{l_{13}} + \dfrac{F_2}{l_{23}} + \dfrac{F_4}{l_{34}} \Big ] \delta \\ U_4\sim & {} \dfrac{F_4}{R_4} + \dfrac{3}{2} \Big [ \dfrac{F_1}{l_{14}} + \dfrac{F_2}{l_{24}} + \dfrac{F_3}{l_{34}} \Big ] \delta \\ U_2 - U_1 = \dot{l}_{12}= & {} \xi _{I}, \quad U_4 - U_3 = \dot{l}_{34} = \xi _{II} \\ F_1 + F_2= & {} 0, \quad F_3 + F_4 = 0. \end{aligned}$$

With \(F_2 = - F_1, \ F_4 = -F_3\), the system is simplified to

$$\begin{aligned} U_1\sim & {} F_1 \Big ( \dfrac{1}{R_1} - \dfrac{3 \delta }{2 l_{12}} \Big ) + \dfrac{3}{2} F_3 \delta \Big ( \dfrac{1}{l_{13}} - \dfrac{1}{l_{14}} \Big ) \\ U_2\sim & {} F_1 \Big ( \dfrac{3 \delta }{2 l_{12}} - \dfrac{1}{R_2} \Big ) + \dfrac{3}{2} F_3 \delta \Big ( \dfrac{1}{l_{23}} - \dfrac{1}{l_{24}} \Big ) \\ U_3\sim & {} \dfrac{3}{2} F_1 \delta \Big ( \dfrac{1}{l_{13}} - \dfrac{1}{l_{23}} \Big ) + F_3 \Big ( \dfrac{1}{R_3} - \dfrac{3 \delta }{2 l_{34}} \Big ) \\ U_4\sim & {} \dfrac{3}{2} F_1 \delta \Big ( \dfrac{1}{l_{14}} - \dfrac{1}{l_{24}} \Big ) + F_3 \Big ( \dfrac{3 \delta }{2 l_{34}} - \dfrac{1}{R_3} \Big ). \end{aligned}$$

When \(R_1 = R_2 = R_3 = R_4 = R\),

$$\begin{aligned} \xi _I= & {} U_2 - U_1 \sim - F_1 \Big ( \dfrac{1}{R_1} + \dfrac{1}{R_2} \Big ) \quad \Rightarrow \quad F_1 = -\dfrac{R}{2} \xi _I \\ \xi _{II}= & {} U_4 - U_3 \sim - F_3 \Big ( \dfrac{1}{R_3} + \dfrac{1}{R_4} \Big ) \quad \Rightarrow \quad F_3 = -\dfrac{R}{2} \xi _{II} . \end{aligned}$$

Velocities of the PMPYs:

$$\begin{aligned} \overline{U}_I= & {} \dfrac{1}{2} \Big ( U_1 + U_2 \Big ) = \dfrac{1}{2} F_1 \Big ( \dfrac{1}{R_1} - \dfrac{1}{R_2} \Big ) + \dfrac{3}{4} F_3 \delta \Big ( \dfrac{1}{l_{13}} - \dfrac{1}{l_{14}} + \dfrac{1}{l_{23}} - \dfrac{1}{l_{24}} \Big )\\&\sim - \dfrac{3}{8} R \xi _{II} \delta \Big ( \dfrac{1}{l_{13}} - \dfrac{1}{l_{14}} + \dfrac{1}{l_{23}} - \dfrac{1}{l_{24}} \Big ) \\ \overline{U}_{II}= & {} \dfrac{1}{2} \Big ( U_3 + U_4 \Big ) = \dfrac{3}{4} F_1 \delta \Big ( \dfrac{1}{l_{13}} - \dfrac{1}{l_{23}} + \dfrac{1}{l_{14}} - \dfrac{1}{l_{24}} \Big ) + \dfrac{1}{2} F_1 \Big ( \dfrac{1}{R_3} - \dfrac{1}{R_4} \Big )\\&\sim - \dfrac{3}{8} R \xi _{I} \delta \Big ( \dfrac{1}{l_{13}} - \dfrac{1}{l_{23}} + \dfrac{1}{l_{14}} - \dfrac{1}{l_{24}} \Big ) \end{aligned}$$

Power of the PMPYs:

$$\begin{aligned} P_I= & {} F_1 U_1 + F_2 U_2 = F_1 \big ( U_1 - U_2 \big ) = - F_1 \xi _I = \dfrac{R}{2} \xi _I^2 \\ P_{II}= & {} F_3 U_3 + F_4 U_4 = F_3 \big ( U_3 - U_4 \big ) = - F_3 \xi _{II} = \dfrac{R}{2} \xi _{II}^2 \end{aligned}$$

However, we observe that although \(\overline{U}_{I}, \overline{U}_{II} \) scale like \(O (\delta )\), the net translations \(X_{I}, X_{II}\) do not. Without loss of generality, we consider the first integral term in \(X_{I }\):

$$\begin{aligned} \int \overline{U}_{I} d t =- \dfrac{3}{8} R \delta \int _0^1 \dfrac{\xi _{II} (t)}{ l_{13} (t)} dt \end{aligned}$$

\(l_{13}\) can be written as \(l_{13} = l_{12} + l_{23} = 2 + \varDelta l_{12} + \varDelta l_{23}\), where \(\varDelta l_{12}, \varDelta l_{23} \sim O(\delta )\), thus

$$\begin{aligned} \dfrac{1}{l_{13}} = \dfrac{1}{2 + \varDelta l_{12} + \varDelta l_{23}} = \dfrac{1}{2} - \dfrac{\varDelta l_{12} + \varDelta l_{23}}{4} + O (\delta ^2) \end{aligned}$$

and

$$\begin{aligned} - \dfrac{3}{8} R \delta \int _0^1 \dfrac{\xi _{II} (t)}{ l_{13} (t)} dt= & {} - \dfrac{3}{8} R \delta \int _0^1 \xi _{II} \Big ( \dfrac{1}{2} - \dfrac{\varDelta l_{12} + \varDelta l_{23}}{4} \Big ) dt + O (\delta ^3) \\= & {} - \dfrac{3}{16} R \delta \int _0^1 \xi _{II} dt + \dfrac{3}{32} R \delta \int _0^1 \xi _{II} ( \varDelta l_{12} + \varDelta l_{23} ) dt + O (\delta ^3). \end{aligned}$$

The first integral vanishes since it is path-independent, the second one is an \(O (\delta ^2)\) term, hence

$$\begin{aligned} - \dfrac{3}{8} R \delta \int _0^1 \dfrac{\xi _{II} (t)}{ l_{13} (t)} dt \sim O (\delta ^2). \end{aligned}$$

A similar argument applies to all other integrals in \(X_{I}, X_{II}\), thus at most \(X_{I}, X_{II} \sim O (\delta ^2)\).

When the radii are not all equal, the leading order term of \(\overline{U}_{I}, \overline{U}_{II} \) scales as O(1), but this does not contribute to the net translations and we still have \(X_{I}, X_{II} \sim O (\delta ^2)\). This is because the leading order terms are of the form \(\varPhi \xi (t)\), where the coefficient \(\varPhi \) depends on the radii only, thus \(\int \varPhi \xi dt\) is again path-independent. Also in this case, the \(O(\delta )\) terms in \(\overline{U}_{I}, \overline{U}_{II} \) become more complicated, but they are still of the form \(\varPhi \xi / l_{ij}\), where \(\varPhi \) depends on the radii only, and the same argument above applies, thus in the end we have \(X_{I}, X_{II} \sim O (\delta ^2)\).

1.2 F.2 System B with controls in \((\dot{R}_1, \dot{R}_3)\)

The asymptotic behavior of the velocity of each sphere is

$$\begin{aligned} U_1\sim & {} \dfrac{F_1}{6 \pi \mu R_1} + \Big [ \dfrac{F_2}{4 \pi \mu l_{12}} - \Big ( \dfrac{R_2}{l_{12}} \Big )^2 \dot{R}_2 \Big ] + \Big [ \dfrac{F_3}{4 \pi \mu l_{13}} - \Big ( \dfrac{R_3}{l_{13}} \Big )^2 \dot{R}_3 \Big ] \\&+ \,\Big [ \dfrac{F_4}{4 \pi \mu l_{14}} - \Big ( \dfrac{R_4}{l_{14}} \Big )^2 \dot{R}_4 \Big ] \\ U_2\sim & {} \dfrac{F_2}{6 \pi \mu R_2} + \Big [ \dfrac{F_1}{4 \pi \mu l_{12}} + \Big ( \dfrac{R_1}{l_{12}} \Big )^2 \dot{R}_1 \Big ] + \Big [ \dfrac{F_3}{4 \pi \mu l_{23}} - \Big ( \dfrac{R_3}{l_{23}} \Big )^2 \dot{R}_3 \Big ] \\&+\, \Big [ \dfrac{F_4}{4 \pi \mu l_{24}} - \Big ( \dfrac{R_4}{l_{24}} \Big )^2 \dot{R}_4 \Big ] \\ U_3\sim & {} \dfrac{F_3}{6 \pi \mu R_3} + \Big [ \dfrac{F_1}{4 \pi \mu l_{13}} + \Big ( \dfrac{R_1}{l_{13}} \Big )^2 \dot{R}_1 \Big ] + \Big [ \dfrac{F_2}{4 \pi \mu l_{23}} + \Big ( \dfrac{R_2}{l_{23}} \Big )^2 \dot{R}_2 \Big ] \\&+ \,\Big [ \dfrac{F_4}{4 \pi \mu l_{34}} - \Big ( \dfrac{R_4}{l_{34}} \Big )^2 \dot{R}_4 \Big ] \\ U_4\sim & {} \dfrac{F_4}{6 \pi \mu R_4} + \Big [ \dfrac{F_1}{4 \pi \mu l_{14}} + \Big ( \dfrac{R_1}{l_{14}} \Big )^2 \dot{R}_1 \Big ] + \Big [ \dfrac{F_2}{4 \pi \mu l_{24}} + \Big ( \dfrac{R_2}{l_{24}} \Big )^2 \dot{R}_2 \Big ] \\&+ \,\Big [ \dfrac{F_3}{4 \pi \mu l_{34}} + \Big ( \dfrac{R_3}{l_{34}} \Big )^2 \dot{R}_3 \Big ] \end{aligned}$$

with relations

$$\begin{aligned} U_2 - U_1= & {} 0, \quad U_4 - U_3 = 0 \\ F_1 + F_2= & {} 0, \quad F_3 + F_4 = 0 \\ R_1^2 \dot{R}_1 + R_2^2 \dot{R}_2= & {} 0 \quad \Rightarrow \quad R_2^2 \zeta _2 = - R_1^2 \zeta _1 \\ R_3^2 \dot{R}_3 + R_4^2 \dot{R}_4= & {} 0 \quad \Rightarrow \quad R_4^2 \zeta _4 = - R_3^2 \zeta _3 . \end{aligned}$$

After scaling with hat notation omitted

$$\begin{aligned} U_1\sim & {} \dfrac{F_1}{R_1} + \Big [ \dfrac{3 F_2}{2 l_{12}} \delta - \Big (\dfrac{R_2}{l_{12}} \Big )^2 \zeta _2 \delta ^2 \Big ] + \Big [ \dfrac{3 F_3}{2 l_{13}} \delta - \Big (\dfrac{R_3}{l_{13}} \Big )^2 \zeta _3 \delta ^2 \Big ] \\&+\, \Big [ \dfrac{3 F_4}{2 l_{14}} \delta - \Big (\dfrac{R_4}{l_{14}} \Big )^2 \zeta _4 \delta ^2 \Big ] \\ U_2\sim & {} \dfrac{F_2}{R_2} + \Big [ \dfrac{3 F_1}{2 l_{12}} \delta + \Big (\dfrac{R_1}{l_{12}} \Big )^2 \zeta _1 \delta ^2 \Big ] + \Big [ \dfrac{3 F_3}{2 l_{23}} \delta - \Big (\dfrac{R_3}{l_{23}} \Big )^2 \zeta _3 \delta ^2 \Big ] \\&+\, \Big [ \dfrac{3 F_4}{2 l_{24}} \delta - \Big (\dfrac{R_4}{l_{24}} \Big )^2 \zeta _4 \delta ^2 \Big ] \\ U_3\sim & {} \dfrac{F_3}{R_3} + \Big [ \dfrac{3 F_1}{2 l_{13}} \delta + \Big (\dfrac{R_1}{l_{13}} \Big )^2 \zeta _1 \delta ^2 \Big ] + \Big [ \dfrac{3 F_2}{2 l_{23}} \delta + \Big (\dfrac{R_3}{l_{23}} \Big )^2 \zeta _2 \delta ^2 \Big ] \\&+\, \Big [ \dfrac{3 F_4}{2 l_{34}} \delta - \Big (\dfrac{R_4}{l_{34}} \Big )^2 \zeta _4 \delta ^2 \Big ] \\ U_4\sim & {} \dfrac{F_4}{R_4} + \Big [ \dfrac{3 F_1}{2 l_{14}} \delta + \Big (\dfrac{R_1}{l_{14}} \Big )^2 \zeta _1 \delta ^2 \Big ] + \Big [ \dfrac{3 F_2}{2 l_{24}} \delta + \Big (\dfrac{R_3}{l_{24}} \Big )^2 \zeta _2 \delta ^2 \Big ] \\&+\, \Big [ \dfrac{3 F_3}{2 l_{34}} \delta + \Big (\dfrac{R_3}{l_{34}} \Big )^2 \zeta _3 \delta ^2 \Big ]. \end{aligned}$$

With \(F_2 = - F_1, \ F_4 = - F_3\), the system becomes

$$\begin{aligned} U_1\sim & {} F_1 \Big ( \dfrac{1}{R_1} - \dfrac{3 \delta }{2 l_{12}} \Big ) + \dfrac{3 F_3}{2} \delta \Big ( \dfrac{1}{l_{13}} - \dfrac{1}{l_{14}} \Big )\\&+\, \delta ^2 \Big [ - \Big ( \dfrac{R_2}{l_{12}} \Big )^2 \zeta _2 - \Big ( \dfrac{R_3}{l_{13}} \Big )^2 \zeta _3 - \Big ( \dfrac{R_4}{l_{14}} \Big )^2 \zeta _4 \Big ] \\ U_2\sim & {} F_1 \Big ( - \dfrac{1}{R_2} + \dfrac{3 \delta }{2 l_{12}} \Big ) + \dfrac{3 F_3}{2} \delta \Big ( \dfrac{1}{l_{23}} - \dfrac{1}{l_{24}} \Big )\\&+\, \delta ^2 \Big [ \Big ( \dfrac{R_1}{l_{12}} \Big )^2 \zeta _1 - \Big ( \dfrac{R_3}{l_{23}} \Big )^2 \zeta _3 - \Big ( \dfrac{R_4}{l_{24}} \Big )^2 \zeta _4 \Big ] \\ U_3\sim & {} \dfrac{3 F_1}{2} \delta \Big ( \dfrac{1}{l_{13}} - \dfrac{1}{l_{23}} \Big ) + F_3 \Big ( \dfrac{1}{R_3} - \dfrac{3 \delta }{2 l_{34}} \Big ) \\&+\, \delta ^2 \Big [ \Big ( \dfrac{R_1}{l_{13}} \Big )^2 \zeta _1 + \Big ( \dfrac{R_2}{l_{23}} \Big )^2 \zeta _2 - \Big ( \dfrac{R_4}{l_{34}} \Big )^2 \zeta _4 \Big ] \\ U_4\sim & {} \dfrac{3 F_1}{2} \delta \Big ( \dfrac{1}{l_{14}} - \dfrac{1}{l_{24}} \Big ) + F_3 \Big ( - \dfrac{1}{R_4} + \dfrac{3 \delta }{2 l_{34}} \Big ) \\&+\, \delta ^2 \Big [ \Big ( \dfrac{R_1}{l_{14}} \Big )^2 \zeta _1 + \Big ( \dfrac{R_2}{l_{24}} \Big )^2 \zeta _2 + \Big ( \dfrac{R_3}{l_{34}} \Big )^2 \zeta _3 \Big ]. \end{aligned}$$

Expand \(F_1, F_3\) as

$$\begin{aligned} F_1 = F_1^0 + \delta F_1^1 + \delta ^2 F_1^2 + O (\delta ^3), \quad F_3 = F_3^0 + \delta F_3^1 + \delta ^2 F_3^2 + O (\delta ^3); \end{aligned}$$

then

$$\begin{aligned} U_1\sim & {} \dfrac{F_1^0}{R_1} + \delta \dfrac{F_1^1}{R_1} - \delta \dfrac{3 F_1^0}{2 l_{12}} + \delta ^2 \dfrac{F_1^2}{R_1} - \delta ^2 \dfrac{3 F_1^1}{2 l_{12}} + \dfrac{3}{2} \delta F_3^0 \Big ( \dfrac{1}{l_{13}} - \dfrac{1}{l_{14}} \Big ) \\&+\, \dfrac{3}{2} \delta ^2 F_3^1 \Big ( \dfrac{1}{l_{13}} - \dfrac{1}{l_{14}} \Big ) \\&+ \,\delta ^2 \Big [ - \Big ( \dfrac{R_2}{l_{12}} \Big )^2 \zeta _2 - \Big ( \dfrac{R_3}{l_{13}} \Big )^2 \zeta _3 - \Big ( \dfrac{R_4}{l_{14}} \Big )^2 \zeta _4 \Big ] + O (\delta ^3) \\ U_2\sim & {} - \dfrac{F_1^0}{R_2} - \delta \dfrac{F_1^1}{R_2} + \delta \dfrac{3 F_1^0}{2 l_{12}} - \delta ^2 \dfrac{F_1^2}{R_2} + \delta ^2 \dfrac{3 F_1^1}{2 l_{12}}\\&+\, \dfrac{3}{2} \delta F_3^0 \Big ( \dfrac{1}{l_{23}} - \dfrac{1}{l_{24}} \Big ) + \dfrac{3}{2} \delta ^2 F_3^1 \Big ( \dfrac{1}{l_{23}} - \dfrac{1}{l_{24}} \Big ) \\&+\, \delta ^2 \Big [ \Big ( \dfrac{R_1}{l_{12}} \Big )^2 \zeta _1 - \Big ( \dfrac{R_3}{l_{23}} \Big )^2 \zeta _3 - \Big ( \dfrac{R_4}{l_{24}} \Big )^2 \zeta _4 \Big ] + O (\delta ^3) \\ U_3\sim & {} \dfrac{F_3^0}{R_3} + \delta \dfrac{F_3^1}{R_3} - \delta \dfrac{3 F_3^0}{2 l_{34}} + \delta ^2 \dfrac{F_3^2}{R_3} - \delta ^2 \dfrac{3 F_3^1}{2 l_{34}}\\&+\, \dfrac{3}{2} \delta F_1^0 \Big ( \dfrac{1}{l_{13}} - \dfrac{1}{l_{23}} \Big ) + \dfrac{3}{2} \delta ^2 F_1^1 \Big ( \dfrac{1}{l_{13}} - \dfrac{1}{l_{23}} \Big ) \\&+\, \delta ^2 \Big [ \Big ( \dfrac{R_1}{l_{13}} \Big )^2 \zeta _1 + \Big ( \dfrac{R_2}{l_{23}} \Big )^2 \zeta _2 - \Big ( \dfrac{R_4}{l_{34}} \Big )^2 \zeta _4 \Big ] + O (\delta ^3) \\ U_4\sim & {} - \dfrac{F_3^0}{R_4} - \delta \dfrac{F_3^1}{R_4} + \delta \dfrac{3 F_3^0}{2 l_{34}} - \delta ^2 \dfrac{F_3^2}{R_4} + \delta ^2 \dfrac{3 F_3^2}{2 l_{34}}\\&+\, \dfrac{3}{2} \delta F_1^0 \Big ( \dfrac{1}{l_{14}} - \dfrac{1}{l_{24}} \Big ) + \dfrac{3}{2} \delta ^2 F_1^1 \Big ( \dfrac{1}{l_{14}} - \dfrac{1}{l_{24}} \Big ) \\&+\, \delta ^2 \Big [ \Big ( \dfrac{R_1}{l_{14}} \Big )^2 \zeta _1 + \Big ( \dfrac{R_2}{l_{24}} \Big )^2 \zeta _2 + \Big ( \dfrac{R_3}{l_{34}} \Big )^2 \zeta _3 \Big ] + O (\delta ^3). \end{aligned}$$

Compare the O(1) terms:

$$\begin{aligned} U_1^0 = U_2^0 \ \Rightarrow \ \dfrac{F_1^0}{R_1} = - \dfrac{F_1^0}{R_2} \ \Rightarrow \ F_1^0 = 0, \quad \text {similarly, } \quad F_3^0 = 0. \end{aligned}$$

Compare the \(O (\delta )\) terms:

$$\begin{aligned} U_1^1 = U_2^1 \ \Rightarrow \ \dfrac{F_1^1}{R_1} = - \dfrac{F_1^1}{R_2} \ \Rightarrow \ F_1^1 = 0, \quad \text {similarly, } \quad F_3^1 = 0. \end{aligned}$$

Compare the \(O (\delta ^2)\) terms:

$$\begin{aligned} U_1^2= & {} \dfrac{F_1^2}{R_1} + \Big [ - \Big ( \dfrac{R_2}{l_{12}} \Big )^2 \zeta _2 - \Big ( \dfrac{R_3}{l_{13}} \Big )^2 \zeta _3 - \Big ( \dfrac{R_4}{l_{14}} \Big )^2 \zeta _4 \Big ] \\ U_2^2= & {} - \dfrac{F_1^2}{R_2} + \Big [ \Big ( \dfrac{R_1}{l_{12}} \Big )^2 \zeta _1 - \Big ( \dfrac{R_3}{l_{23}} \Big )^2 \zeta _3 - \Big ( \dfrac{R_4}{l_{24}} \Big )^2 \zeta _4 \Big ] \\ U_1^2 = U_2^2\Rightarrow & {} F_1^2 = \dfrac{R_1 R_2}{R_1 + R_2} \Big ( \dfrac{1}{l_{13}^2} - \dfrac{1}{l_{23}^2} - \dfrac{1}{l_{14}^2} + \dfrac{1}{l_{24}^2} \Big ) R_3^2 \zeta _3 \end{aligned}$$

and similarly,

$$\begin{aligned} U_3^2= & {} \dfrac{F_3^2}{R_3} + \Big [ \Big ( \dfrac{R_1}{l_{13}} \Big )^2 \zeta _1 + \Big ( \dfrac{R_2}{l_{23}} \Big )^2 \zeta _2 - \Big ( \dfrac{R_4}{l_{34}} \Big )^2 \zeta _4 \Big ] \\ U_4^2= & {} - \dfrac{F_3^2}{R_4} + \Big [ \Big ( \dfrac{R_1}{l_{14}} \Big )^2 \zeta _1 + \Big ( \dfrac{R_2}{l_{24}} \Big )^2 \zeta _2 + \Big ( \dfrac{R_3}{l_{34}} \Big )^2 \zeta _3 \Big ] \\ U_3^2 = U_4^2\Rightarrow & {} F_3^2 = \dfrac{R_3 R_4}{R_3 + R_4} \Big ( \dfrac{1}{l_{14}^2} - \dfrac{1}{l_{13}^2} - \dfrac{1}{l_{24}^2} + \dfrac{1}{l_{23}^2} \Big ) R_1^2 \zeta _1. \end{aligned}$$

Velocities of the PMPYs:

$$\begin{aligned} U_I= & {} U_1 = U_2 = \dfrac{R_1^2}{l_{12}^2} \zeta _1 \delta ^2 + R_3^2 \zeta _3 \delta ^2 \Big [ \dfrac{R_1}{R_1 + R_2} \Big ( \dfrac{1}{l_{14}^2} - \dfrac{1}{l_{13}^2} \Big )\\&+\, \dfrac{R_2}{R_1 + R_2} \Big ( \dfrac{1}{l_{24}^2} - \dfrac{1}{l_{23}^2} \Big ) \Big ] \\ U_{II}= & {} U_3 = U_4 = \dfrac{R_3^2}{l_{34}^2} \zeta _3 \delta ^2 + R_1^2 \zeta _1 \delta ^2 \Big [ \dfrac{R_3}{R_3 + R_4} \Big ( \dfrac{1}{l_{13}^2} - \dfrac{1}{l_{23}^2} \Big )\\&+\, \dfrac{R_4}{R_3 + R_4} \Big ( \dfrac{1}{l_{14}^2} - \dfrac{1}{l_{24}^2} \Big ) \Big ] \end{aligned}$$

Power of the PMPYs:

$$\begin{aligned} P_I= & {} \dfrac{8}{3} \big ( R_1 \zeta _1^2 + R_2 \zeta _2^2 \big ) = \dfrac{8}{3} R_1 \dfrac{R_1^3 + R_2^3}{R_2^3} \zeta _1^2 \\ P_{II}= & {} \dfrac{8}{3} \big ( R_3 \zeta _3^2 + R_4 \zeta _4^2 \big ) = \dfrac{8}{3} R_3 \dfrac{R_3^3 + R_4^3}{R_4^3} \zeta _3^2 \end{aligned}$$

1.3 F.3 System C with controls in \((\dot{l}_{I}, \dot{R}_3)\)

The asymptotic behavior of the velocity of each sphere is

$$\begin{aligned} U_1\sim & {} \dfrac{F_1}{6 \pi \mu R_1} + \dfrac{F_2}{4 \pi \mu l_{12}} + \Big [ \dfrac{F_3}{4 \pi \mu l_{13}} - \Big ( \dfrac{R_3}{l_{13}} \Big )^2 \dot{R}_3 \Big ] + \Big [ \dfrac{F_4}{4 \pi \mu l_{14}} - \Big ( \dfrac{R_4}{l_{14}} \Big )^2 \dot{R}_4 \Big ] \\ U_2\sim & {} \dfrac{F_2}{6 \pi \mu R_2} + \dfrac{F_1}{4 \pi \mu l_{12}} + \Big [ \dfrac{F_3}{4 \pi \mu l_{23}} - \Big ( \dfrac{R_3}{l_{23}} \Big )^2 \dot{R}_3 \Big ] + \Big [ \dfrac{F_4}{4 \pi \mu l_{24}} - \Big ( \dfrac{R_4}{l_{24}} \Big )^2 \dot{R}_4 \Big ] \\ U_3\sim & {} \dfrac{F_3}{6 \pi \mu R_3} + \dfrac{F_1}{4 \pi \mu l_{13}} + \dfrac{F_2}{4 \pi \mu l_{23}} + \Big [ \dfrac{F_4}{4 \pi \mu l_{34}} - \Big ( \dfrac{R_4}{l_{34}} \Big )^2 \dot{R}_4 \Big ] \\ U_4\sim & {} \dfrac{F_4}{6 \pi \mu R_4} + \dfrac{F_1}{4 \pi \mu l_{14}} + \dfrac{F_2}{4 \pi \mu l_{24}} + \Big [ \dfrac{F_3}{4 \pi \mu l_{34}} + \Big ( \dfrac{R_3}{l_{34}} \Big )^2 \dot{R}_3 \Big ] \end{aligned}$$

with relations

$$\begin{aligned} U_2 - U_1= & {} \dot{l}_{12} = \xi _I, \quad U_4 - U_3 = 0 \\ F_1 + F_2= & {} 0 , \quad F_3 + F_4 = 0 \\ R_3^2 \zeta _3 + R_4^2 \zeta _4= & {} 0 \ \Rightarrow \ R_4^2 \zeta _4 = - R_3^2 \zeta _3. \end{aligned}$$

After scaling

$$\begin{aligned} U_1\sim & {} \dfrac{F_1}{R_1} + \dfrac{3 F_2}{2 l_{12}} \delta + \Big [ \dfrac{2 F_3}{2 l _{13}} \delta - \Big ( \dfrac{R_3}{l_{13}} \Big )^2 \zeta _3 \delta ^2 \Big ] + \Big [ \dfrac{3 F_4}{2 l_{14}} \delta - \Big ( \dfrac{R_4}{l_{14}} \Big )^2 \zeta _4 \delta ^2 \Big ] \\ U_2\sim & {} \dfrac{F_2}{R_2} + \dfrac{3 F_1}{2 l_{12}} \delta + \Big [ \dfrac{2 F_3}{2 l _{23}} \delta - \Big ( \dfrac{R_3}{l_{23}} \Big )^2 \zeta _3 \delta ^2 \Big ] + \Big [ \dfrac{3 F_4}{2 l_{24}} \delta - \Big ( \dfrac{R_4}{l_{24}} \Big )^2 \zeta _4 \delta ^2 \Big ] \\ U_3\sim & {} \dfrac{F_3}{R_3} + \dfrac{3 F_1}{2 l_{13}} \delta + \dfrac{3 F_2}{2 l_{23}} \delta + \Big [ \dfrac{3 F_4}{2 l_{34}} \delta - \Big ( \dfrac{R_4}{l_{34}} \Big )^2 \zeta _4 \delta ^2 \Big ] \\ U_4\sim & {} \dfrac{F_4}{R_4} + \dfrac{3 F_1}{2 l_{14}} \delta + \dfrac{3 F_2}{2 l_{24}} \delta + \Big [ \dfrac{3 F_3}{2 l_{34}} \delta + \Big ( \dfrac{R_3}{l_{34}} \Big )^2 \zeta _3 \delta ^2 \Big ]. \end{aligned}$$

With \(F_2 = - F_1, \ F_4 = - F_3\), the system is simplified to

$$\begin{aligned} U_1\sim & {} \dfrac{F_1}{R_1} - \dfrac{3 F_1}{2 l_{12}} \delta + \Big [ \dfrac{3 F_3}{2 l_{13}} \delta - \Big ( \dfrac{R_3}{l_{13}} \Big )^2 \zeta _3 \delta ^2 \Big ] + \Big [ - \dfrac{3 F_3}{2 l_{14}} \delta + \Big ( \dfrac{R_3}{l_{14}} \Big )^2 \zeta _3 \delta ^2 \Big ] \\ U_2\sim & {} - \dfrac{F_1}{R_2} + \dfrac{3 F_1}{2 l_{12}} \delta + \Big [ \dfrac{3 F_3}{2 l_{23}} \delta - \Big ( \dfrac{R_3}{l_{13}} \Big )^2 \zeta _3 \delta ^2 \Big ] + \Big [ - \dfrac{3 F_3}{2 l_{24}} \delta + \Big ( \dfrac{R_3}{l_{24}} \Big )^2 \zeta _3 \delta ^2 \Big ] \\ U_3\sim & {} \dfrac{F_3}{R_3} + \dfrac{3 F_1}{2 l_{13}} \delta - \dfrac{3 F_1}{2 l_{23}} \delta + + \Big [ - \dfrac{3 F_3}{2 l_{34}} \delta + \Big ( \dfrac{R_3}{l_{34}} \Big )^2 \zeta _3 \delta ^2 \Big ] \\ U_4\sim & {} - \dfrac{F_3}{R_4} + \dfrac{3 F_1}{2 l_{14}} \delta - \dfrac{3 F_1}{2 l_{24}} \delta + + \Big [ \dfrac{3 F_3}{2 l_{34}} \delta + \Big ( \dfrac{R_3}{l_{34}} \Big )^2 \zeta _3 \delta ^2 \Big ]. \end{aligned}$$

For PMPY I,

$$\begin{aligned} \xi _I = U_2 - U_1 \sim - F_1 \big ( \dfrac{1}{R_1} + \dfrac{1}{R_2} \big ) \ \Rightarrow \ F_1 = - \dfrac{R_1 R_2}{R_1 + R_2} \xi _I, \end{aligned}$$

thus for PMPY II,

$$\begin{aligned} U_3\sim & {} \dfrac{F_3}{R_3} - \dfrac{3}{2} \dfrac{R_1 R_2}{R_1 + R_2} \xi _I \delta \Big ( \dfrac{1}{l_{13}} - \dfrac{1}{l_{23}} \Big ) - \dfrac{3 F_3}{2 l_{34}} \delta + \Big ( \dfrac{R_3}{l_{34}} \Big )^2 \zeta _3 \delta ^2 \\ U_4\sim & {} - \dfrac{F_3}{R_4} - \dfrac{3}{2} \dfrac{R_1 R_2}{R_1 + R_2} \xi _I \delta \Big ( \dfrac{1}{l_{14}} - \dfrac{1}{l_{24}} \Big ) + \dfrac{3 F_3}{2 l_{34}} \delta + \Big ( \dfrac{R_3}{l_{34}} \Big )^2 \zeta _3 \delta ^2 . \end{aligned}$$

Expand \(F_3\) as \(F_3 = F_3^0 + \delta F_3^1 + \delta ^2 F_3^2 + O (\delta ^3)\),

$$\begin{aligned} U_3\sim & {} \dfrac{F_3^0}{R_3} + \delta \dfrac{F_3^1}{R_3} + \delta ^2 \dfrac{F_3^2}{R_3} - \dfrac{3}{2} \dfrac{R_1 R_2}{R_1 + R_2} \xi _I \delta \Big ( \dfrac{1}{l_{13}} - \dfrac{1}{l_{23}} \Big ) - \dfrac{3 F_3^0}{2 l _{34}} \delta - \dfrac{3 F_3^1}{2 l_{34}} \delta ^2 \\&+\, \Big ( \dfrac{R_3}{l_{34}} \Big )^2 \zeta _3 \delta ^2 \\ U_4\sim & {} - \dfrac{F_3^0}{R_4} - \delta \dfrac{F_3^1}{R_4} - \delta ^2 \dfrac{F_3^2}{R_4} - \dfrac{3}{2} \dfrac{R_1 R_2}{R_1 + R_2} \xi _I \delta \Big ( \dfrac{1}{l_{14}} - \dfrac{1}{l_{24}} \Big ) + \dfrac{3 F_3^0}{2 l _{34}} \delta + \dfrac{3 F_3^1}{2 l_{34}} \delta ^2 \\&+\, \Big ( \dfrac{R_3}{l_{34}} \Big )^2 \zeta _3 \delta ^2 \end{aligned}$$

Compare the O(1) terms

$$\begin{aligned} U_3^0 = U_4^0 \ \Rightarrow \ \dfrac{F_3^0}{R_3} = - \dfrac{F_3^0}{R_4} \ \Rightarrow \ F_3^0 = 0. \end{aligned}$$

Compare the \(O ( \delta )\) terms

$$\begin{aligned} U_3^1 = U_4^1 \ \Rightarrow \ F_3^1 = \dfrac{3}{2} \dfrac{R_1 R_2}{R_1 + R_2} \dfrac{R_3 R_4}{R_3 + R_4} \xi _I \Big ( \dfrac{1}{l_{13}} - \dfrac{1}{l_{23}} - \dfrac{1}{l_{14}} + \dfrac{1}{l_{24}} \Big ) \end{aligned}$$

Velocities of the PMPYs:

$$\begin{aligned} \overline{U}_I= & {} \dfrac{1}{2} (U_1 + U_2) \\= & {} \dfrac{9}{8} \dfrac{R_1 R_2 R_3 R_4}{(R_1 + R_2) (R_3 + R_4)} \xi _I \delta ^2 \Big ( \dfrac{1}{l_{13}} - \dfrac{1}{l_{14}} + \dfrac{1}{l_{23}} - \dfrac{1}{l_{24}} \Big )^2\\&+ \,\dfrac{1}{2} R_3^2 \zeta _3 \delta ^2\Big ( \dfrac{1}{l_{14}^2} - \dfrac{1}{l_{13}^2} + \dfrac{1}{l_{24}^2} - \dfrac{1}{l_{23}^2} \Big ) \\ \overline{U}_{II}= & {} U_3 = U_4 \\&\sim \dfrac{3}{2} \dfrac{R_1 R_2}{R_1 + R_2} \xi _I \delta \Big [ \dfrac{R_3}{R_3 + R_4} \Big ( \dfrac{1}{l_{23}} - \dfrac{1}{l_{13}} \Big ) + \dfrac{R_4}{R_3 + R_4} \Big ( \dfrac{1}{l_{24}} - \dfrac{1}{l_{14}} \Big ) \Big ] \end{aligned}$$

Power of the PMPYs:

$$\begin{aligned} P_I= & {} F_1 U_1 + F_2 U_2 = F_1 (U_1 - U_2) = - F_1 \xi _I = \dfrac{R_1 R_2}{R_1 + R_2} \xi _I^2 \\ P_{II}= & {} \dfrac{8}{3} (R_3 \zeta _3^2 + R_4 \zeta _4^2) = \dfrac{8}{3} R_3 \dfrac{R_3^3 + R_4^3}{R_4^3} \zeta _3^2 \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Othmer, H.G. Analysis of a model microswimmer with applications to blebbing cells and mini-robots. J. Math. Biol. 76, 1699–1763 (2018). https://doi.org/10.1007/s00285-018-1225-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-018-1225-y

Keywords

Mathematics Subject Classification

Navigation