Skip to main content
Log in

Two-patch population models with adaptive dispersal: the effects of varying dispersal speeds

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The population-dispersal dynamics for predator–prey interactions and two competing species in a two patch environment are studied. It is assumed that both species (i.e., either predators and their prey, or the two competing species) are mobile and their dispersal between patches is directed to the higher fitness patch. It is proved that such dispersal, irrespectively of its speed, cannot destabilize a locally stable predator–prey population equilibrium that corresponds to no movement at all. In the case of two competing species, dispersal can destabilize population equilibrium. Conditions are given when this cannot happen, including the case of identical patches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams PA (2005) ‘Adaptive Dynamics’ vs. ‘adaptive dynamics’. J Evol Biol 18: 1162–1165

    Article  Google Scholar 

  • Abrams PA (2007) Habitat choice in predator-prey systems: spatial instability due to interacting adaptive movements. Am Nat 169: 581–594

    Article  Google Scholar 

  • Abrams PA (2010) Implications of flexible foraging for interspecific interactions: lessons from simple models. Funct Ecol 24: 7–17

    Article  Google Scholar 

  • Abrams PA, Cressman R, Křivan V (2007) The role of behavioral dynamics in determining the patch distributions of interacting species. Am Nat 169: 505–518

    Article  Google Scholar 

  • Ahlering MA, Faaborg J (2009) Avian habitat management meets conspecific attraction: if you build it, will they come?. Auk 123: 301–312

    Article  Google Scholar 

  • Allen L (2007) An introduction to mathematical biology. Prentice Hall, Upper Saddle River, p 07458

    Google Scholar 

  • Amarasekare P (1998) Interactions between local dynamics and dispersal: insights from single species models. Theor Popul Biol 53: 44–59

    Article  MATH  Google Scholar 

  • Bascompte J, Solé RV (1995) Spatially induced bifurcations in single-species population dynamics. J Anim Ecol 63: 256–265

    Article  Google Scholar 

  • Bolker B, Holyoak M, Křivan V, Rowe L, Schmitz OJ (2003) Connecting theoretical and empirical studies of trait-mediated interactions. Ecology 84: 1101–1114

    Article  Google Scholar 

  • Briggs CJ, Hoopes MF (2004) Stabilizing effects in spatial parasitoid-host and predator-prey models: a review. Theor Popul Biol 65: 299–315

    Article  MATH  Google Scholar 

  • Cantrell RS, Cosner C, DeAngelis DL, Padron V (2007) The ideal free distribution as an evolutionarily stable strategy. J Biol Dyn 1: 249–271

    Article  MathSciNet  MATH  Google Scholar 

  • Comins H, Hamilton W, May R (1980) Evolutionarily stable dispersal strategies. J Theor Biol 82: 205–230

    Article  MathSciNet  Google Scholar 

  • Cosner C (2008) Reaction-diffusion equations and ecological modeling. In: Freedman A (ed) Tutorials in mathematical biosciences IV. Lecture notes in mathematics, vol 1922. Springer, Berlin, pp 77–116

    Google Scholar 

  • Cressman R, Křivan V (2006) Migration dynamics for the ideal free distribution. Am Nat 168: 384–397

    Article  Google Scholar 

  • Cressman R, Vickers GT (1997) Spatial and density effects in evolutionary game theory. J Theor Biol 184: 359–369

    Article  Google Scholar 

  • Cressman R, Křivan V, Garay J (2004) Ideal free distributions, evolutionary games, and population dynamics in multiple-species environments. Am Nat 164: 473–489

    Article  Google Scholar 

  • Dercole F, Rinaldi S (2008) Analysis of evolutionary processes. The adaptive dynamics approach and its applications. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Dieckmann U, O’Hara B, Weisser W (1999) The evolutionary ecology of dispersal. Trends Ecol Evol 14: 88–90

    Article  Google Scholar 

  • Diffendorfer JE (1998) Testing models of source-sink dynamics and balanced dispersal. Oikos 81: 417–433

    Article  Google Scholar 

  • Donahue MJ, Holyoak M, Feng C (2003) Patterns of dispersal and dynamics among habitat patches varying in quality. Am Nat 162: 302–317

    Article  Google Scholar 

  • Ferriere R, Belthoff JR, Olivieri I, Krackow S (2000) Evolving dispersal: where to go next?. Trends Ecol Evol 15: 5–7

    Article  Google Scholar 

  • Folmer E, Olff H, Piersma T (2010) How well do food distributions predict spatial distributions of shorebirds with different degrees of self-organization?. J Anim Ecol 79: 747–756

    Google Scholar 

  • Fretwell DS, Lucas HL (1969) On territorial behavior and other factors influencing habitat distribution in birds. Acta Biotheoretica 19: 16–32

    Article  Google Scholar 

  • Gadgil M (1971) Dispersal: population consequences and evolution. Ecology 52: 253–261

    Article  Google Scholar 

  • Gause GF (1934) The struggle for existence. Williams and Wilkins, Baltimore

    Book  Google Scholar 

  • Geritz SAH, Kisdi E, Meszéna G, Metz JAJ (1998) Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol Ecol 12: 35–57

    Article  Google Scholar 

  • Greenslade TB (1993) All about Lissajous figures. Phys Teacher 31: 364–370

    Article  Google Scholar 

  • Hamilton WD, May RM (1977) Dispersal in stable habitats. Nature 269(5629): 578–581

    Article  Google Scholar 

  • Hanski I (1999) Metapopulation ecology. Oxford University Press, New York

    Google Scholar 

  • Hanski, IA, Gilpin, ME (eds) (1997) Metapopulation biology: ecology, genetics, and evolution. Academic Press, San Diego

    MATH  Google Scholar 

  • Hassell MP, Comins HN, May RM (1991) Spatial structure and chaos in insect population dynamics. Nature 353: 255–258

    Article  Google Scholar 

  • Hassell MP, Miramontes O, Rohani P, May RM (1995) Appropriate formulations for dispersal in spatially structured models: comments on Bascompte & Solé. J Anim Ecol 64: 662–664

    Article  Google Scholar 

  • Hastings A (1983) Can spatial variation alone lead to selection for dispersal?. Theor Popul Biol 24: 244–251

    Article  MathSciNet  MATH  Google Scholar 

  • Hofbauer J, Sigmund K (1988) The theory of evolution and dynamical systems. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Hofbauer J, Sigmund K (1998) Evolutionary games and population dynamics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Holt RD (1984) Spatial heterogeneity, indirect interactions, and the coexistence of prey species. Am Nat 124: 377–406

    Article  Google Scholar 

  • Holt RD (1985) Population dynamics in two-patch environments: some anomalous consequences of an optimal habitat distribution. Theor Popul Biol 28: 181–208

    Article  MathSciNet  MATH  Google Scholar 

  • Holt RD, Barfield M (2001) On the relationship between the ideal-free distribution and the evolution of dispersal. In: Danchin JCE, Dhondt A, Nichols J (eds) Dispersal. Oxford University Press, New York, pp 83–95

    Google Scholar 

  • Holt RD, McPeek MA (1996) Chaotic population dynamics favors the evolution of dispersal. Am Nat 148: 709–718

    Article  Google Scholar 

  • Huang Y, Diekmann O (2003) Interspecific influence on mobility and Turing instability. Bull Math Biol 65: 143–156

    Article  Google Scholar 

  • Jansen VAA, Lloyd AL (2000) Local stability analysis of spatially homogeneous solutions of multi-patch systems. J Math Biol 41: 232–252

    Article  MathSciNet  MATH  Google Scholar 

  • Kennedy M, Gray RD (1993) Can ecological theory predict the distribution of foraging animals? A critical analysis of experiments on the ideal free distribution. Oikos 68: 158–166

    Article  Google Scholar 

  • Křivan V (2008) Prey-predator models. In: Jorgensen SE, Fath BD (eds) Encyclopedia of ecology, vol 4. Elsevier, Oxford, pp 2929–2940

    Google Scholar 

  • Křivan V, Sirot E (2002) Habitat selection by two competing species in a two-habitat environment. Am Nat 160: 214–234

    Article  Google Scholar 

  • Křivan V, Cressman R, Schneider S (2008) The ideal free distribution: a review and synthesis of the game-theoretic perspective. Theor Popul Biol 73: 403–425

    Article  MATH  Google Scholar 

  • Kuznetsov YA (1995) Elements of applied bifurcation theory. Applied mathematical sciences, no 112. Springer, New York

    Book  Google Scholar 

  • Levin SA (1974) Dispersion and population interactions. Am Nat 108: 207–228

    Article  Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73: 1943–1967

    Article  Google Scholar 

  • Losos JB, Schoener TW, Langerhans RB, Spiller DA (2006) Rapid temporal reversal in predator-driven natural selection. Science 314: 1111

    Article  Google Scholar 

  • McPeek MA, Holt RD (1992) The evolution of dispersal in spatially and temporally varying environments. Am Nat 140: 1010–1027

    Article  Google Scholar 

  • Morris DW (1999) Has the ghost of competition passed?. Evol Ecol Res 1: 3–20

    Google Scholar 

  • Murdoch WW, Briggs CJ, Nisbet RM (2003) Consumer-resource dynamics. Princeton University Press, Princeton

    Google Scholar 

  • Padrón V, Trevisan MC (2006) Environmentally induced dispersal under heterogeneous logistic growth. Math Biosci 199: 160–174

    Article  MathSciNet  MATH  Google Scholar 

  • Relyea RA, Auld JR (2004) Having the guts to compete: how intestinal plasticity explains costs of inducible defences. Ecol Lett 7: 869–875

    Article  Google Scholar 

  • Rohani P, Ruxton GD (1999a) Diffusion-induced instabilities in host-parasitoid metapopulations. Theor Popul Biol 55: 23–36

    Article  MATH  Google Scholar 

  • Rohani P, Ruxton GD (1999b) Dispersal and stability in metapopulations. IMA J Math Appl Med Biol 16: 297–306

    Article  MATH  Google Scholar 

  • Rosenzweig ML, MacArthur RH (1963) Graphical representation and stability conditions of predator-prey interactions. Am Nat 97: 209–223

    Article  Google Scholar 

  • Ruxton GD (1996) Density-dependent migration and stability in a system of linked populations. Bull Math Biol 58: 643–660

    Article  MATH  Google Scholar 

  • Svirezhev YM, Logofet DO (1983) Stability of biological communites. Mir Publishers, Moscow

    Google Scholar 

  • Takeuchi Y (1996) Global dynamical properties of Lotka-Volterra systems. World Scientific, Singapore

    Book  MATH  Google Scholar 

  • Taylor PD, Jonker LB (1978) Evolutionary stable strategies and game dynamics. Math Biosci 40: 145–156

    Article  MathSciNet  MATH  Google Scholar 

  • Tilman D, Kareiva P (1997) Spatial ecology: the role of space in population dynamics and interspecific interactions. Monographs in population biology, no 30. Princeton University Press, Princeton

    Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Phil Trans R Soc Lond B 237: 37–72

    Article  Google Scholar 

  • Vincent TL, Brown JS (2005) Evolutionary game theory, natural selection, and Darwinian dynamics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Werner EE, Peacor SD (2003) A review of trait-mediated indirect interactions in ecological communities. Ecology 84: 1083–1100

    Article  Google Scholar 

  • Wikelski M, Thom C (2000) Marine iguanas shrink to survive El Nino—changes in bone metabolism enable these adult lizards to reversibly alter their length. Nature 403: 37–38

    Article  Google Scholar 

  • Yalden DW (2000) Shrinking shrews. Nature 403: 826

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vlastimil Křivan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cressman, R., Křivan, V. Two-patch population models with adaptive dispersal: the effects of varying dispersal speeds. J. Math. Biol. 67, 329–358 (2013). https://doi.org/10.1007/s00285-012-0548-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-012-0548-3

Keywords

Mathematics Subject Classification

Navigation