Skip to main content
Log in

Spiky and transition layer steady states of chemotaxis systems via global bifurcation and Helly’s compactness theorem

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The most important phenomenon in chemotaxis is cell aggregation. To model this phenomenon we use spiky or transition layer (step-function-like) steady states. In the case of one spatial dimension, we carry out global bifurcation analysis on the Keller–Segel model and several variants of it, showing that positive steady states exist if the chemotactic coefficient \({\chi}\) is larger than a bifurcation value \({\bar{\chi}_1}\) which can be explicitly expressed in terms of the parameters in the models; then we use Helly’s compactness theorem to obtain the profiles of these steady states when the ratio of the chemotactic coefficient and the cell diffusion rate is large, showing that they are either spiky or have the transition layer structure. Our results provide insights on how the biological parameters affect pattern formation, and reveal the similarities and differences of some popular chemotaxis models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Chertock A, Kurganov A, Wang X, Wu Y (2012) On a chemotaxis model with saturated chemotactic flux. Kinetic Relat Models 3: 51–95

    Article  MathSciNet  Google Scholar 

  • Childress S, Perkus J (1981) Nonlinear aspects of chemotaxis. Math Biosci 56: 217–237

    Article  MathSciNet  MATH  Google Scholar 

  • Cohen M, Robertson A (1971) Wave propagation in the early stages of aggregation of cellular slime molds. J Theoret Biol 31: 101–118

    Article  Google Scholar 

  • Crandall MG, Rabinowitz PH (1971) Bifurcation from simple eigenvalues. J Funct Anal 8: 321–340

    Article  MathSciNet  MATH  Google Scholar 

  • Fasano A, Mancini A, Primiceri M (2004) Equilibrium of two populations subject to chemotaxis. Math Models Methods Appl Sci 14: 503–533

    Article  MathSciNet  MATH  Google Scholar 

  • Fitzpatrick PM, Pejsachowicz J (1991) Parity and generalized multiplicity. Trans Am Math Soc 326: 281–305

    Article  MathSciNet  MATH  Google Scholar 

  • Grindrod P, Murray JD, Sinha S (1989) Steady-state spatial patterns in a cell-chemotaxis model. IMA J Math Appl Med Biol 6: 69–79

    Article  MathSciNet  MATH  Google Scholar 

  • Gui C, Wei J (1999) Multiple interior peak solutions for some singularly perturbed Neumann problems. J Differ Equ 158: 1–27

    Article  MathSciNet  MATH  Google Scholar 

  • Hillen T, Painter KJ (2001) Global existence for a parabolic chemotaxis model with prevention of overcrowding. Adv Appl Math 26: 280–301

    Article  MathSciNet  MATH  Google Scholar 

  • Hillen T, Painter KJ (2009) A user’s guide to PDE models for chemotaxis. J Math Biol 58: 183–217

    Article  MathSciNet  MATH  Google Scholar 

  • Hillen T, Potapov A (2004) The one-dimensional chemotaxis model: global existence and asymptotic profile. Math Methods Appl Sci 27: 1783–1801

    Article  MathSciNet  MATH  Google Scholar 

  • Horstmann D (2001) The nonsymmetric case of the Keller-Segel model in chemotaxis: some recent results. Nonlinear Differ Equ Appl 8: 399–423

    Article  MathSciNet  MATH  Google Scholar 

  • Horstmann D (2003) From 1970 until now: the Keller-Segal model in chemotaxis and its consequences I. Jahresber DMV 105: 103–165

    MathSciNet  MATH  Google Scholar 

  • Horstmann D (2004) From 1970 until now: the Keller-Segal model in chemotaxis and its consequences II. Jahresber DMV 106: 51–69

    MathSciNet  MATH  Google Scholar 

  • Kabeya Y, Ni W-M (1998) Stationary Keller-Segel model with the linear sensitivity. RIMS Kokyuroku 1025: 44–65

    MathSciNet  MATH  Google Scholar 

  • Kabeya Y, Ni W-M (2012) Point condensation phenomena for a chemotaxis model with a linear sensitivity. (preprint)

  • Kang K, Kolokolnikov T, Ward MJ (2007) The stability and dynamics of a spike in the one-dimensional Keller-Segel model. IMA J Appl Math 72: 140–162

    Article  MathSciNet  MATH  Google Scholar 

  • Keller E, Segel L (1970) Initiation of slime mold aggregation viewed as an instability. J Theoret Biol 26: 399–415

    Article  Google Scholar 

  • Lin C-S, Ni W-M, Takagi I (1988) Large amplitude stationary solutions to a chemotaxis system. J Differ Equ 72: 1–27

    Article  MathSciNet  MATH  Google Scholar 

  • Maini PK, Myerscough MR, Winters KH, Murray JD (1991) Bifurcating spatially heterogeneous solutions in a chemotaxis model for biological pattern generation. Bull Math Biol 53: 701–719

    MATH  Google Scholar 

  • Nanjundiah V (1973) Chemotaxis, signal relaying and aggregation morphology. J Theoret Biol 42: 63–105

    Article  Google Scholar 

  • Ni W-M (1998) Diffusion, cross-diffusion, and their spike-layer steady states. Notices Am Math Soc 45: 9–18

    MATH  Google Scholar 

  • Ni W-M, Takagi I (1993) Locating the peaks of least-energy solutions to a semilinear Neumann problem. Duke Math J 70: 247–281

    Article  MathSciNet  MATH  Google Scholar 

  • Othmer H, Stevens A (1997) Aggregation, blow up, and collapse: the abc’s of taxis in reinforced random walk. SIAM J Appl Math 57: 1044–1081

    Article  MathSciNet  MATH  Google Scholar 

  • Painter K, Hillen T (2002) Volume-filling and quorum-sensing in models for chemosensitive movement. Can Appl Math Quart 10: 501–534

    MathSciNet  MATH  Google Scholar 

  • Pejsachowicz J, Rabier PJ (1998) Degree theory for C 1 Fredholm mappings of index 0. J Anal Math 76: 289–319

    Article  MathSciNet  MATH  Google Scholar 

  • Potapov AB, Hillen T (2005) Metastability in chemotaxis models. J Dyn Differ Equ 17: 293–330

    Article  MathSciNet  MATH  Google Scholar 

  • Rabinowitz PH (1971) Some global results for nonlinear eigenvalue problems. J Funct Anal 7: 487–513

    Article  MathSciNet  MATH  Google Scholar 

  • Schaaf R (1985) Stationary solutions of chemotaxis systems. Trans Am Math Soc 292: 531–556

    Article  MathSciNet  MATH  Google Scholar 

  • Senba T, Suzuki T (2000) Some structures of the solution set for a stationary system of chemotaxis. Adv Math Sci Appl 10: 191–224

    MathSciNet  MATH  Google Scholar 

  • Sleeman B, Ward M, Wei J (2005) The existence, stability, and dynamics of spike patterns in a chemotaxis model. SIAM J Appl Math 65: 790–817

    Article  MathSciNet  MATH  Google Scholar 

  • Shi J, Wang X (2009) On the global bifurcation for quasilinear elliptic systems on bounded domains. J Differ Equ 246: 2788–2812

    Article  MATH  Google Scholar 

  • Velazquez J (2004) Point dynamics for a singular limit of the Keller-Segel model 1: motion of the concentration regions. SIAM J Appl Math 64: 1198–1223

    Article  MathSciNet  MATH  Google Scholar 

  • Wang X (2000) Qualitative behavior of solutions of chemotactic diffusion systems:effects of motility and chemotaxis and dynamics. SIAM J Math Anal 31: 535–560

    Article  MathSciNet  MATH  Google Scholar 

  • Wang G, Wei J (2002) Steady state solutions of a reaction-diffusion system modelling chemotaxis. Math Nachr 233/234: 221–236

    Article  Google Scholar 

  • Wang X, Wu Y (2002) Qualitative analysis on a chemotactic diffusion model for two species competing for a limited resource. Q Appl Math 60: 505–531

    MATH  Google Scholar 

  • Wei J (2008) Existence and stability of spikes for the Gierer-Meinhardt system. In: Handbook of differential equations: stationary partial differential equations, vol 5, pp 487–585

  • Xu Q (2011) Existence and stability of steady states of several class of quasilinear systems involving cross diffusion. PhD thesis, Capital Normal University

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Xu, Q. Spiky and transition layer steady states of chemotaxis systems via global bifurcation and Helly’s compactness theorem. J. Math. Biol. 66, 1241–1266 (2013). https://doi.org/10.1007/s00285-012-0533-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-012-0533-x

Mathematics Subject Classification