Skip to main content

Advertisement

Log in

Trait Substitution Sequence process and Canonical Equation for age-structured populations

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We are interested in a stochastic model of trait and age-structured population undergoing mutation and selection. We start with a continuous time, discrete individual-centered population process. Taking the large population and rare mutations limits under a well-chosen time-scale separation condition, we obtain a jump process that generalizes the Trait Substitution Sequence process describing Adaptive Dynamics for populations without age structure. Under the additional assumption of small mutations, we derive an age-dependent ordinary differential equation that extends the Canonical Equation. These evolutionary approximations have never been introduced to our knowledge. They are based on ecological phenomena represented by PDEs that generalize the Gurtin–McCamy equation in Demography. Another particularity is that they involve an establishment probability, describing the probability of invasion of the resident population by the mutant one, that cannot always be computed explicitly. Examples illustrate how adding an age-structure enrich the modelling of structured population by including life history features such as senescence. In the cases considered, we establish the evolutionary approximations and study their long time behavior and the nature of their evolutionary singularities when computation is tractable. Numerical procedures and simulations are carried.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Athreya K.B., Ney P.E.: Branching Processes. Springer edition, Heidelberg (1970)

    Google Scholar 

  2. Busenberg S., Iannelli M.: A class of nonlinear diffusion problems in age-dependent population dynamics. Nonlinear Anal. Theory Methods Appl. 7(5), 501”29 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  3. Champagnat, N.: Convergence and existence for polymorphic adaptive dynamics jump and degenerate diffusion models. Preprint Laboratoire MODAL’X 03/7, 03 2003

  4. Champagnat N.: A microscopic interpretation for adaptative dynamics trait substitution sequence models. Stoch. Process. Appl. 116, 1127”160 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Champagnat, N., Ferrière, R., Méléard, S.: Individual-based probabilistic models of adpatative evolution and various scaling approximations. In: Proceedings of the 5th seminar on Stochastic Analysis, Random Fields and Applications, Probability in Progress Series, Ascona, Suisse, 2006. Birkhauser, Basel

  6. Champagnat N., Ferrière R., Méléard S.: Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models via timescale separation. Theor. Populat. Biol. 69, 297”21 (2006)

    Article  MATH  Google Scholar 

  7. Charlesworth B.: Evolution in Age structured Population, 2nd edn. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  8. Dawson, D.A.: Mesure-valued markov processes. In: Ecole d’Eté de probabilités de Saint-Flour XXI, pp. 1”60. Lectures Notes in Math., vol. 1541. Springer, New York (1993)

  9. Dieckmann U., Heino M., Parvinen K.: The adaptive dynamics of function-valued traits. J. Theor. Biol. 241(2), 370”89 (2006)

    Article  MathSciNet  Google Scholar 

  10. Dieckmann U., Law R.: The dynamical theory of coevolution: a derivation from stochastic ecological processes. J. Math. Biol. 34, 579”12 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Diekmann O.: A beginner’s guide to adaptive dynamics. Banach Center Publ. 63, 47”6 (2003)

    Article  MathSciNet  Google Scholar 

  12. Doney R.A.: Age-dependent birth and death processes. Z. Wahrscheinlichkeitstheorie verw. 22, 69”0 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  13. Durinx, M., Metz, J.A.J.: Multi-type branching processes and adaptive dynamics of structured populations. In: Haccou, P., Jagers, P., Vatutin, V (eds.) Branching Processes in Biology: Variation, Growth and Extinction of Populations, pp. 266”77. Cambridge University Press, Cambridge (2005)

  14. Ernande B., Dieckman U., Heino M.: Adaptive changes in harvested populations: plasticity and evolution of age and size at maturation. Proc. R. Soc. Lond. B 271, 415”23 (2004)

    Article  Google Scholar 

  15. Von Foerster H.: Some remarks on changing populations. In: Stohlman, F. Jr. (eds) The Kinetics of Cellular Proliferation, pp. 382”07. Grune & Stratton, New York (1959)

    Google Scholar 

  16. Fournier N., Méléard S.: A microscopic probabilistic description of a locally regulated population and macroscopic approximations. Ann. Appl. Probab. 14(4), 1880”919 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Geritz S.A.H., Metz J.A.J., Kisdi E., Meszéna G.: The dynamics of adaptation and evolutionary branching. Phys. Rev. Lett. 78, 2024”027 (1997)

    Article  Google Scholar 

  18. Gurtin M.E., MacCamy R.C.: Nonlinear age-dependent population dynamics. Arch. Rat. Mech. Anal. 54, 281”00 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  19. Henrici P.: Applied and Computational Complex Analysis. Wiley, New York (1997)

    Google Scholar 

  20. Henson S.M.: A continuous age-structured insect population model. J. Math. Biol. 39, 217”43 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hofbauer J., Sigmund R.: Adaptive dynamics and evolutionary stability. Appl. Math. Lett. 3, 75”9 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  22. Jagers P.: Branching Processes with Biological Applications. Wiley, New York (1975)

    MATH  Google Scholar 

  23. Jagers P.: Coupling and population dependence in branching processes. Ann. Appl. Probab. 7(2), 281”98 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  24. Jagers P., Klebaner F.: Population-size-dependent and age-dependent branching processes. Stochast. Process. Appl. 87, 235”54 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kendall D.G.: Stochastic processes and population growth. J. Roy. Stat. Sec. Ser. B 11, 230”64 (1949)

    MathSciNet  Google Scholar 

  26. Kingsbury, A.: Pink salmon. Alaska Department of Fish and Game, “www.adfg.state.ak.us/pubs/notebook/fish/pink.php”(1994)

  27. Kisdi E.: Evolutionary branching under asymmetric competition. J. Theor. Biol. 197(2), 149”62 (1999)

    Article  MathSciNet  Google Scholar 

  28. McKendrick A.G.: Applications of mathematics to medical problems. Proc. Edin. Math.Soc. 54, 98”30 (1926)

    Google Scholar 

  29. Metz, J.A.J.: Fitness. In: Jorgensen, S.E. (ed.) Encyclopedia of Ecology. Elsevier, Amsterdam

  30. Metz, J.A.J., Geritz, S.A.H., Meszéna, G., Jacobs, F.A.J., Van Heerwaarden, J.S.: Adaptative dynamics, a geometrical study of the consequences of nearly faithful reproduction. In: Van Strien, S.J., Verduyn Lunel, S.M. (eds.) Stochastic and Spatial Structures of Dynamical Systems, vol. 45, pp. 183”31 (1996)

  31. Mischler S., Perthame B., Ryzhik L.: Stability in a nonlinear population maturation model. Math. Models Methods Appl. Sci. 12, 1”2 (2002)

    Article  MathSciNet  Google Scholar 

  32. Murray, J.D.: Mathematical Biology, vol. 19 of Biomathematics, 3rd edn. Springer, Heidelberg (1993)

  33. Oelschläger K.: Limit theorem for age-structured populations. Ann. Probab. 18(1), 290”18 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  34. Parvinen K., Dieckmann U., Heino M.: Function-valued adaptive dynamics and the calculus of variations. J. Math. Biol. 52, 1”6 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  35. Perthame B., Ryzhik L.: Exponential decay for the fragmentation or cell-division equation. J. Differ. Equat. 210, 155”77 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  36. Promislow D.E.L.: Senescence in natural population of mammals: a comparative study. Evolution 45(8), 1869”887 (1991)

    Article  Google Scholar 

  37. Rachev S.T.: Probability Metrics and the Stability of Stochastic Models. Wiley, New York (1991)

    MATH  Google Scholar 

  38. Rotenberg M.: Transport theory for growing cell populations. J. Theor. Biol. 103, 181”99 (1983)

    Article  MathSciNet  Google Scholar 

  39. Thieme H.R.: Mathematics in Population Biology. Princeton Series in Theoretical and Computational Biology. Princeton University Press, New Jersey (2003)

    Google Scholar 

  40. Tran, V.C.: Modèles particulaires stochastiques pour des problèmes d’évolution adaptative et pour l’approximation de solutions statistiques. PhD thesis, Université Paris X - Nanterre. ”http://tel.archives-ouvertes.fr/tel-00125100

  41. Tran V.C.: Large population limit and time behaviour of a stochastic particle model describing an age-structured population. ESAIM: P&S 12, 345”86 (2008)

    Article  MathSciNet  Google Scholar 

  42. Webb, G.F.: Theory of Nonlinear Age-Dependent Population Dynamics. Monographs and Textbooks in Pure and Applied mathematics, vol. 89. Marcel Dekker, inc., New York (1985)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viet Chi Tran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Méléard, S., Tran, V.C. Trait Substitution Sequence process and Canonical Equation for age-structured populations. J. Math. Biol. 58, 881–921 (2009). https://doi.org/10.1007/s00285-008-0202-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-008-0202-2

Keywords

Mathematics Subject Classification (2000)

Navigation