Skip to main content
Log in

An equation-free approach to analyzing heterogeneous cell population dynamics

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We propose a computational approach to modeling the collective dynamics of populations of coupled, heterogeneous biological oscillators. We consider the synchronization of yeast glycolytic oscillators coupled by the membrane exchange of an intracellular metabolite; the heterogeneity consists of a single random parameter, which accounts for glucose influx into each cell. In contrast to Monte Carlo simulations, distributions of intracellular species of these yeast cells are represented by a few leading order generalized Polynomial Chaos (gPC) coefficients, thus reducing the dynamics of an ensemble of oscillators to dynamics of their (typically significantly fewer) representative gPC coefficients. Equation-free (EF) methods are employed to efficiently evolve this coarse description in time and compute the coarse-grained stationary state and/or limit cycle solutions, circumventing the derivation of explicit, closed-form evolution equations. Coarse projective integration and fixed-point algorithms are used to compute collective oscillatory solutions for the cell population and quantify their stability. These techniques are extended to the special case of a “rogue” oscillator; a cell sufficiently different from the rest “escapes” the bulk synchronized behavior and oscillates with a markedly different amplitude. The approach holds promise for accelerating the computer-assisted analysis of detailed models of coupled heterogeneous cell or agent populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abramowitz M. and Stegun I. (1970). Handbook of Mathematical Functions. Dover Publications, Inc., New York

    Google Scholar 

  2. Acebrón J.A., Bonilla L.L., Pérez Vicente C.J., Ritort F. and Spigler R. (2005). The kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77: 137–185

    Article  Google Scholar 

  3. Aït-Sahalia Y. (2002). Maximum likelihood estimation of discretely sampled diffusions: a closed-form approximation approach. Econometrica 70(1): 223–262

    Article  MATH  MathSciNet  Google Scholar 

  4. Aon M.A., Cortassa S., Westerhoff H.V. and Dam K. (1992). Synchrony and mutual stimulation of yeast cells during fast glycolytic oscillations. J. Gen. Microbiol. 138: 2219–2227

    Google Scholar 

  5. Belkin M. and Niyogi P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6): 1373–1396

    Article  MATH  Google Scholar 

  6. Betz A. and Chance B. (1965). Phase relationship of glycolytic intermediates in yeast cells with oscillatory metabolic control. Arch. Biochem. Biophys. 109: 585–594

    Article  Google Scholar 

  7. Bier M., Bakker B.M. and Westerhoff H.V. (2000). How yeast cells synchronize their glycolytic oscillations: a perturbation analytic treatment. Biophys. J. 78: 1087–1093

    Google Scholar 

  8. Chance B., Williamson J.R., Jamieson D. and Schoener B. (1965). Properties and kinetics of reduced pyridine nucleotide fluorescence of the isolated and in vivo rat heart. Biochem. J. 341: 357–377

    Google Scholar 

  9. Dano S., Sorensen P.G. and Hynne F. (1999). Sustained oscillations in living cells. Nature 402: 320–322

    Article  Google Scholar 

  10. Das J. and Busse H.G. (1985). Long term oscillations in glycolysis. J. Biochem. 97: 719–727

    Google Scholar 

  11. Das J. and Busse H.G. (1991). Analysis of the dynamics of relaxation type oscillation in glycolysis of yeast extracts. Biophys. J. 60: 363–379

    Google Scholar 

  12. Deb M.K., Babuška I.M. and Oden J.T. (2001). Solution of stochastic partial differential equations using Galerkin finite element techniques. Comput. Methods Appl. Mech. Eng. 190(48): 6359–6372

    Article  MATH  Google Scholar 

  13. Fishman G. (1996). Monte Carlo: Concepts, Algorithms and Applications. Springer, New York

    MATH  Google Scholar 

  14. Forger D.B. and Peskin C.S. (2003). A detailed predictive model of the mammalian circadian clock. PNAS 100(25): 14806–14811

    Article  Google Scholar 

  15. Gear C.W. and Kevrekidis I.G. (2002). Projective methods for stiff differential equations: Problems with gaps in their eigenvalue spectrum. SIAM J. Sci. Comput. 24(4): 1091–1106

    Article  MathSciNet  Google Scholar 

  16. Gear C.W. and Kevrekidis I.G. (2003). Telescopic projective methods for parabolic differential equations. J. Comput. Phys. 187(1): 95–109

    Article  MATH  MathSciNet  Google Scholar 

  17. Gear C.W., Kevrekidis I.G. and Theodoropoulos C. (2002). Coarse integration/bifurcation analysis via microscopic simulators: micro-Galerkin methods. Comput Chemical Engineering 26: 941–963

    Article  Google Scholar 

  18. Gear C.W., Kaper T.J., Kevrekidis I.G. and Zagaris A. (2005). Projecting to a slow manifold: singularly perturbed systems and legacy codes. SIAM J. Appl. Dyn. Syst. 4(3): 711–732 (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ghanem R. (1998). Probabilistic characterization of transport in heterogeneous porous media. Comput. Methods Appl. Mech. Eng. 158: 3–4

    Article  Google Scholar 

  20. Ghanem R.G. and Spanos P.D. (1991). Stochastic Finite Elements: A Spectral Approach. Springer, New York

    MATH  Google Scholar 

  21. Ghosh A.K., Chance B. and Pye E.K. (1971). Metabolic coupling and synchronization of NADH oscillations in yeast cell populations. Arch. Biochem. Biophys. 145: 319–331

    Article  Google Scholar 

  22. Goldbeter A. (1996). Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  23. Goldbeter A. and Lefever R. (1972). Dissipative structures for an allosteric model. Application to glycolytic oscillations. Biophys. J. 12: 1302–1315

    Article  Google Scholar 

  24. Henson M.A. (2004). Modeling the synchronization of yeast respiratory oscillations. J. Theoret. Biol. 231(3): 443–458

    Article  MathSciNet  Google Scholar 

  25. Henson M.A., Muller D. and Reuss M. (2002). Cell population modeling of yeast glycolytic oscillations. Biochem. J. 368: 433–446

    Article  Google Scholar 

  26. Hirsch, M.W., Smale, S., Devaney, R.L.: Differential equations, dynamical systems, and an introduction to chaos. In: Pure and Applied Mathematics (Amsterdam), vol. 60, 2nd edn. Elsevier/Academic Press, Amsterdam (2004)

  27. Hynne F., Dano S. and Sorensen P. (2001). Full-scale model of glycolysis in Saccharomyces cerevisiae. Biophys. Chem. 94: 121–163

    Article  Google Scholar 

  28. Ibsen K.H. and Schiller K.W. (1967). Oscillations of nucleotides and glycolytic intermediates in aerobic suspensions of Ehrlich ascites tumor cells. Biochem. Biophys. Acta 799: 291–297

    Google Scholar 

  29. Kelley, C.T.: Iterative Methods for Linear and Nonlinear Equations. SIAM (1995)

  30. Kevrekidis I.G., Gear C.W., Hyman J.M., Kevrekidis P.G., Runborg O. and Theodoropoulos C. (2003). Equation-free, coarse-grained multiscale computation: enabling microscopic simulators to perform system-level analysis. Commun. Math. Sci. 1(4): 715–762

    MATH  MathSciNet  Google Scholar 

  31. Kevrekidis I.G., Gear C.W. and Hummer G. (2004). Equation-free: the computer-assisted analysis of complex, multiscale systems. AIChE J. 50(7): 1346–1354

    Article  Google Scholar 

  32. Kreuzberg K. and Martin W. (1984). Oscillatory starch degradation and fermentation in the green algae chlamydomonas reinhardii. Biochem. Biophys. Acta 799: 291–297

    Google Scholar 

  33. Lee, S.L., Gear, C.W.: Second-order accurate projective integrators for multiscale problems. UCRL-JRNL-212640 (2005)

  34. Maitre O.L., Knio O., Reagan M., Najm H. and Ghanem R. (2001). A stochastic projection method for fluid flow. i: basic formulation. J. Comp. Phys. 173: 481–511

    Article  MATH  Google Scholar 

  35. Maitre O.L., Knio O., Najm H. and Ghanem R. (2004). Uncertainty propagation using Wiener–Haar expansions. J. Comp. Phys. 197: 28–57

    Article  MATH  Google Scholar 

  36. Michel S. and Colwell C.S. (2001). Cellular communication and coupling within the suprachiasmatic nucleus. Chronobiol. Int. 18: 579–600

    Article  Google Scholar 

  37. Moon S.J. and Kevrekidis I.G. (2006). An equation-free approach to coupled oscillator dynamics: the kuramoto model example. Int. J. Bifurcations Chaos 16: 2043–2052

    Article  MATH  MathSciNet  Google Scholar 

  38. Moon, S.J., Ghanem, R., Kevrekidis, I.G.: Coarse-graining the dynamics of coupled oscillators. Phys. Rev. Lett. 96 (2006)

  39. Nadler B., Lafon S., Coifman R.R. and Kevrekidis I.G. (2006). Difusion maps, spectral clustering and reaction coordinates of dynamical systems. Appl. Comput. Harmon. Anal. 21(1): 113–127

    Article  MATH  MathSciNet  Google Scholar 

  40. Reagan M., Najm H., Knio O., Ghanem R. and Lemaitre O. (2003). Uncertainty propagation in reacting-flow simulations through spectral analysis. Combust. Flame 132: 545–555

    Article  Google Scholar 

  41. Reagan M., Najm H., Debusschere B., Maitre O.L., Knio O. and Ghanem R. (2004). Spectral stochastic uncertainty quantification in chemical systems. Combust. Theory Model. 8: 607–632

    Article  Google Scholar 

  42. Richard P., Diderich J.A., Bakker B.M., Teusink B., van Dam K. and Westerhoff H.V. (1994). Yeast cells with a specific cellular make-up and an environment that removes acetaldehyde are prone to sustained glycolytic oscillations. FEBS Lett. 341: 223–226

    Article  Google Scholar 

  43. Richard P., Bakker B.M., Teusink B., van Dam K. and Westerhoff H.V. (1996). Acetaldehyde mediates the synchronization of sustained glycolytic oscillations in populations of yeast cells. Eur. J. Biochem. 235: 238–241

    Article  Google Scholar 

  44. Schuler, M.L., Domach, M.: Mathematical models of the growth of individual cells. Found Biochem Eng. Am. Chem. Soc. 93–133 (1983)

  45. Selkov E.E. (1975). Stabilization of energy charge, generation of oscillation and multiple steady states in energy metabolism as a result of purely stoichiometric regulation. Eur. J. Biochem. 59: 151–157

    Article  Google Scholar 

  46. Strogatz S.H. (2000). From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143(1–4): 1–20. Bifurcations, patterns and symmetry

    Article  MATH  MathSciNet  Google Scholar 

  47. Strogatz S.H. (2003). Sync: The Emerging Science of Spontaneous Order. Hyperion, New York

    Google Scholar 

  48. Theodoropoulos C., Qian Y.-H. and Kevrekidis I.G. (2000). Coarse stability and bifurcation analysis using time-steppers: a reaction-diffusion example. PNAS 97(18): 9840–9843

    Article  MATH  Google Scholar 

  49. To, T.-L., Henson, M.A., Herzog, E.D., Doyle III, F.J.: A computational model for intercellular synchronization in the mammalian circadian clock. Biophys. J. (accepted for publication)

  50. Tornheim K. (1988). Fructose 2,6-bisphosphate and glycolytic oscillations in skeletal muscle extracts. J. Biol. Chem. 263: 2619–2624

    Google Scholar 

  51. Winfree A.T.: The geometry of biological time. In: Interdisciplinary Applied Mathematics, vol. 12. Springer, New York

  52. Wolf J. and Heinrich R. (1997). Dynamics of two-component biochemical systems in interacting cells: Synchronization and desynchronization of oscillations and multiple steady states. Biosystems 43: 1–24

    Article  Google Scholar 

  53. Wolf J. and Heinrich R. (2000). Effect of cellular interaction on glycolytic oscillations in yeast: A theoretical investigation. Biochem. J. 345: 321–334

    Article  Google Scholar 

  54. Wolf J., Passarge J., Somsen O.J.G., Snoep J.L., Heinrich R. and Westerhoff H.L. (2000). Transduction of intracellular and intercellular dynamics in yeast glycolytic oscillations. Biophys. J. 78: 1145–1153

    Google Scholar 

  55. Xiu D.B. and Karniadakis G.E. (2002). The wiener-askey polynomial chaos for stochastic differential equations. SIAM J. Sci.Comput. 24(2): 619–644

    Article  MATH  MathSciNet  Google Scholar 

  56. Xiu D.B., Ghanem R. and Kevrekidis I.G. (2005). An equation-free approach to uncertain quantification in dynamical systems. IEEE Comput. Sci. Eng. J. (CiSE) 7(3): 16–23

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis G. Kevrekidis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bold, K.A., Zou, Y., Kevrekidis, I.G. et al. An equation-free approach to analyzing heterogeneous cell population dynamics. J. Math. Biol. 55, 331–352 (2007). https://doi.org/10.1007/s00285-007-0086-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-007-0086-6

Mathematics Subject Classification (2000)

Navigation