Skip to main content

Advertisement

Log in

A cardiovascular-respiratory control system model including state delay with application to congestive heart failure in humans

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract.

This paper considers a model of the human cardiovascular-respiratory control system with one and two transport delays in the state equations describing the respiratory system. The effectiveness of the control of the ventilation rate is influenced by such transport delays because blood gases must be transported a physical distance from the lungs to the sensory sites where these gases are measured. The short term cardiovascular control system does not involve such transport delays although delays do arise in other contexts such as the baroreflex loop (see [46]) for example. This baroreflex delay is not considered here. The interaction between heart rate, blood pressure, cardiac output, and blood vessel resistance is quite complex and given the limited knowledge available of this interaction, we will model the cardiovascular control mechanism via an optimal control derived from control theory. This control will be stabilizing and is a reasonable approach based on mathematical considerations as well as being further motivated by the observation that many physiologists cite optimization as a potential influence in the evolution of biological systems (see, e.g., Kenner [29] or Swan [62]). In this paper we adapt a model, previously considered (Timischl [63] and Timischl et al. [64]), to include the effects of one and two transport delays. We will first implement an optimal control for the combined cardiovascular-respiratory model with one state space delay. We will then consider the effects of a second delay in the state space by modeling the respiratory control via an empirical formula with delay while the the complex relationships in the cardiovascular control will still be modeled by optimal control. This second transport delay associated with the sensory system of the respiratory control plays an important role in respiratory stability. As an application of this model we will consider congestive heart failure where this transport delay is larger than normal and the transition from the quiet awake state to stage 4 (NREM) sleep. The model can be used to study the interaction between cardiovascular and respiratory function in various situations as well as to consider the influence of optimal function in physiological control system performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Batzel, J.J., Tran, H.T.: Modeling Instability in the Control System for Human Respiration: applications to infant non-REM sleep. Appl. Math. Comput. 110, 1–51 (2000)

    Google Scholar 

  2. Batzel, J.J., Tran, H.T.: Stability of the human respiratory control system. Part1: Analysis of a two dimensional delay state-space delay model. J. Math. Biol. 41 (1), 45–79 (2000)

    Article  MATH  Google Scholar 

  3. Batzel, J.J., Tran, H.T.: Stability of the human respiratory control system. Part2: Analysis of a three dimensional delay state-space model. J. Math. Biol. 41 (1), 80–102 (2000)

    Article  MATH  Google Scholar 

  4. Bennett, L.S., Langford, B.A., Stradling, J.R., Davies, R.J.: Sleep fragmentation indices as predictors of daytime sleepiness and nCPAP response in obstructive sleep apnea. Am. J. Resp. Crit. Care Med. 158 (3), 778–786 (1998)

    Google Scholar 

  5. Bevier, W.C., Bunnell, D.E., Horvath, S.M.: Cardiovascular function during sleep of active older adults and the effects of exercise. Exp. Gerontol. 22 (5), 329–37 (1987)

    Article  Google Scholar 

  6. Bocchi, E.A., Vilella de Moraes, A.V., Esteves-Filho, A., Bacal, F., Auler, J.O., Carmona, M.J., Bellotti, G., Ramires, A.F.: L-arginine reduces heart rate and improves hemodynamics in severe congestive heart failure. Clin. Cardiol. 23 (3), 205–210 (2000)

    Google Scholar 

  7. Bruschi, C., Fanfulla, F., Traversi, E., Patruno, V., Callegari, G., Tavazzi, L., Rampulla, C.: Identification of chronic heart failure patients at risk of Cheyne-Stokes respiration. Monaldi Arch. Chest Dis. 54 (4), 319–324 (1999)

    Google Scholar 

  8. Burgess, H.J., Kleiman, J., Trinder, J.: Cardiac activity during sleep onset. Psychophysiology 36 (3), 298–306 (1999)

    Article  Google Scholar 

  9. Cherniack, N.S.: Apnea and periodic breathing during sleep. New Engl. J. Med. 341 (13), 985–987 (1999)

    Article  Google Scholar 

  10. Chiariello, M., Perrone-Filardi, P.: Pathophysiology of heart failure. Miner Electrolyte Metab. 25 (1–2), 6–10 (1999)

  11. Crystal, R.G., West, J.B., et al. (eds.): The Lung: Scientific foundations. Lippincott-Raven Press, Philadelphia, 1997

  12. Fincham, W.F., Tehrani, F.T.: A mathematical model of the human respiratory system. J. Biomed. Eng. 5 (2), 125–133 (1983)

    Google Scholar 

  13. Fishman, A.P., Cherniack, N.S., Widdicombe, J.G., Geiger, S.R., (eds.): Handbook of Physiology: The Respiratory System, Volume II, Control of Breathing, Part 2. Am. Phys. Soc. Bethesda, Maryland, 1986

  14. Grodins, F.S., Buell, J., Bart, A.J.: Mathematical analysis and digital simulation of the respiratory control system. J. Appl. Physiol. 22 (2), 260–276 (1967)

    Google Scholar 

  15. Grodins, F.S.: Integrative cardiovascular physiology: a mathematical synthesis of cardiac and blood vessel hemodynamics. Quart. Rev. Biol. 34 (2), 93–116 (1959)

    Article  Google Scholar 

  16. Grodins, F.S.: Control Theory and Biological Systems. Columbia University Press, New York, 1963

  17. Guyton, A.C.: Textbook of Medical Physiology. 7th ed. W. B. Saunders Company, Philadelphia, 1986

  18. Hall, M.J., Xie, A., Rutherford, R., Ando, S., Floras, J.S., Bradley, T.D.: Cycle length of periodic breathing in patients with and without heart failure. Am. J. Respir. Crit. Care. Med. 154 (2 pt. 1), 376–381 (1996)

    Google Scholar 

  19. Hambrecht, R., Gielen, S., Linke, A., Fiehn, E., Yu, J., Walther, C., Schoene, N., Schuler, G.: Effects of exercise training on left ventricular function and peripheral resistance in patients with chronic heart failure: A randomized trial. Jama 283 (23), 3095–3101 (2000)

    Google Scholar 

  20. Hanly, P., Zuberi, N., Gray, R.: Pathogenesis of Cheyne-Stokes respiration in patients with congestive heart failure: relationship to arterial PCO2. Chest 104 (4), 1079–1084 (1993)

    Google Scholar 

  21. Huntsman, L.L., Noordergraaf, A., Attinger, E.O.: Metabolic autoregulation of blood flow in skeletal muscle: a model. In: J. Baan, A. Noordergraaf, J. Raines (eds.), Cardiovascular System Dynamics, MIT Press, Cambridge, 1978, pp. 400–414

  22. Javaheri, S.: A mechanism of central sleep apnea in patients with heart failure. New Engl. J. Med. 341 (13), 949–54 (1999)

    Article  Google Scholar 

  23. Kappel, F., Peer, R.O.: A mathematical model for fundamental regulation processes in the cardiovascular system. J. Math. Biol. 31 (6), 611–631 (1993)

    MATH  Google Scholar 

  24. Kappel, F., Peer, R.O.: Implementation of a cardiovascular model and algorithms for parameter identification. SFB Optimierung und Kontrolle, Karl-Franzens-Universität Graz, technical report Nr. 26, 1995

  25. Kappel, F., Propst, G.: Approximation of feedback control for delay systems using Legendre polynomials. Conf. Sem. Mat. Univ. Bari. Nr. 201, 1984

  26. Kappel, F., Salamon, D.: Spline approximation for retarded systems and the Riccati equation. Siam J. Control Optim. 25 (4), 1082–1117 (1987)

    MATH  Google Scholar 

  27. Kappel, F., Lafer, S., Peer, R.O.: A model for the cardiovascular system under an ergometric workload. Surv. Math. Ind. 7, 239–250 (1997)

    Google Scholar 

  28. Katz, A.M.: Physiology of the heart: 2nd edition. Raven Press, NY, 1992

  29. Kenner, T.: Physical and mathematical modeling in cardiovascular systems. In: N.H.C. Hwang, E.R. Gross, D.J. Patel (eds.) Clinical and Research Applications of Engineering Principles, University Park Press, Baltimore, 1979, pp. 41–109

  30. Khoo, M.C.K., Kronauer, R.E., Strohl, K.P., Slutsky, A.S.: Factors inducing periodic breathing in humans: a general model. J. Appl. Physiol. 53 (3), 644–659 (1982)

    Google Scholar 

  31. Khoo, M.C.K.: A model of respiratory variability during non-REM sleep. In: G.D. Swanson, F.S. Grodins, R.L. Hughson, (Eds.) Respiratory Control: A Modeling Perspective, Plenum Press, New York, 1989

  32. Khoo, M.C.K.: Modeling the effect of sleep-state on respiratory stability. In: M.C.K. Khoo (eds.) Modeling and Parameter Estimation in Respiratory Control, Plenum Press, New York, 1989, pp. 193–204

  33. Khoo, M.C.K., Yamashiro, S.M.: Models of control of breathing. In: H.A. Chang, M. Paiva (eds.) Respiratory Physiology: an analytical approach, Marcel Dekker, New York, 1989, pp. 799–829

  34. Khoo, M.C.K., Gottschalk, A., Pack, A.I.: Sleep-induced periodic breathing and apnea: a theoretical study. J. Appl. Physiol. 70 (5), 2014–2024 (1991)

    Google Scholar 

  35. Klinke, R., Silbernagl, S. (Eds.): Lehrbuch der Physiologie. Georg Thieme Verlag, Stuttgart, 1994

  36. Koo, K.W., Sax, D.S., Snider, G.L.: Arterial blood gases and pH during sleep in chronic obstructive pulmonary disease. Am. J. Med. 58 (5), 663–670 (1975)

    Article  Google Scholar 

  37. Krieger, J., Maglasiu, N., Sforza, E., Kurtz, D.: Breathing during sleep in normal middle age subjects. Sleep 13 (2), 143–154 (1990)

    Google Scholar 

  38. Kugler, J., Maskin, C., Frishman, W.H., Sonnenblick, E.H., LeJemtel, T.H.: Regional and systemic metabolic effects of angiotensin-converting enzyme inhibition during exercise in patients with severe heart failure. Circulation 66 (6), 1256–1261 (1982)

    Google Scholar 

  39. Lorenzi-Filho, G., Rankin, F., Bies, I., Douglas Bradley, T.: Effects of inhaled carbon dioxide and oxygen on Cheyne-Stokes respiration in patients with heart failure. Am. J. Respir. Crit. Care Med. 159 (5 pt. 1), 1490–1498 (1999)

  40. Mancia, G.: Autonomic modulation of the cardiovascular system during sleep. New Engl. J. Med. 328 (5), 347–349 (1993)

    Article  Google Scholar 

  41. Martin, L.: Pulmonary physiology in clinical practice : the essentials for patient care and evaluation. Mosby Press, St. Louis, 1987

  42. Mateika, J.H., Mateika, S., Slutsky, A.S., Hoffstein, V.: The effect of snoring on mean arterial blood pressure during non-REM sleep. Am. Rev. Respir. Dis. 145 (1), 141–146 (1992)

    Google Scholar 

  43. Moraes, D.L., Colucci, W.S., Givertz, M.M.: Secondary pulmonary hypertension in chronic heart failure: the role of the endothelium in pathophysiology and management. Circulation 102 (14), 1718–1723 (2000)

    Google Scholar 

  44. Niebauer, J., Clark, A.L., Anker, S.D., Coats, A.J.S.: Three year mortality in heart failure patients with very low left ventricular ejection fractions. Int. J. Cardiol. 70 (3), 245–247 (1999)

    Article  Google Scholar 

  45. Noordergraaf, A., Melbin, J.: Introducing the pump equation. In: T. Kenner, R. Busse, H. Hinghofer-Szalkay (eds.) Cardiovascular System Dynamics: Models and Measurements, Plenum Press, New York, 1982, pp. 19–35

  46. Ottesen, J.T.: Modeling of the baroreflex-feedback mechanism with time-delay. J. Math. Biol. 36 (1), 41–63 (1997)

    Article  MATH  Google Scholar 

  47. Parmley, W.W.: Pathophysiology of congestive heart failure. Am. J. Cardiol. 56 (2), 7A–11A (1985)

    Article  Google Scholar 

  48. Peer, R.O.: Mathematische Modellierung von grundlegenden Regelungsvorgängen im Herzkreislauf-System. Technical Report, Karl-Franzens-Universität und Technische Universität Graz, 1989

  49. Peskin, C.S.: Lectures on mathematical aspects of physiology. In: F.C. Hoppensteadt (eds.) Mathematical Aspects of Physiology, Lect. Appl. Math. 19, Am. Math. Soc, Providence, Rhode Island, 1981, pp. 1–107

  50. Phillipson, E.A., Bowes, G.: Control of breathing during sleep. In: A.P. Fishman, N.S. Cherniack, J.G. Widdicombe, S.R. Geiger (eds.) Handbook of Physiology, Section 3: The Respiratory System, Volume II, Control of Breathing, Part 2, Am. Phys. Soc. Bethesda, Maryland, 1986, pp. 649–690

  51. Pinna, G.D., Maestri, R., Mortara, A., La Rovere, M.T., Fanfulla, F., Sleight, P.: Periodic breathing in heart failure patients: testing the hypothesis of instability of the chemoreflex loop. J. Appl. Physiol. 89 (6), 2147–2157 (2000)

    Google Scholar 

  52. Podszus, T.: Kreislauf und Schlaf. In: H. Schulz (ed.) Kompendium Schlafmedizin für Ausbildung, Klinik und Praxis, Deutsche Gesllschaft für Schlafforschung und Schlafmedizin, Landsberg, Lech: Ecomed-Verl.-Ges., 1997

  53. Quaranta, A.J., D’Alonso, G.E., Krachman, S.L.: Cheyne-Stokes respiration during sleep in congestive heart failure. Chest 111 (2), 467–473 (1997)

    Google Scholar 

  54. Richardson, D.W., Wasserman, A.J., Patterson, J.L., Jr.: General and regional circulatory responses to change in blood pH and carbon dioxide tension. J. Clin. Invest. 40, 31–43 (1961)

    Google Scholar 

  55. Rowell, L.B.: Human Cardiovascular Control. Oxford University Press, 1993

  56. Russell, D.L.: Mathematics of finite-dimensional control systems: theory and design. Marcel Dekker, New York, 1979

  57. Schneider, H., Schaub, C.D., Andreoni, K.A., Schwartz, A.R., Smith, P.L., Robotham, J.L., O’Donnell, C.P.: Systemic and pulmonary hemodynamic responses to normal and obstructed breathing during sleep. J. Appl. Physiol. 83 (5), 1671–1680 (1997)

    Google Scholar 

  58. Schoen, F.J.: The heart-a pathophysiological perspective, Ch. 13. In: R.S. Cotran et al. (eds) Robbins Pathologic Basis of Disease, Sixth Edition, W. B. Saunders, Philadelphia, 1999

  59. Shepard, J.W., Jr: Gas exchange and hemodynamics during sleep. Med. Clin. North Am. 69 (6), 1243–1264 (1985)

    Google Scholar 

  60. Somers, V.K., Dyken, M.E., Mark, A.L., Abboud, F.M.: Sympathetic-nerve activity during sleep in normal subjects. New Engl. J. Med. 328 (5), 303–307 (1993)

    Article  Google Scholar 

  61. Sullivan, M.J., Higginbotham, M.B., Cobb, F.R.: Increased exercise ventilation in patients with chronic heart failure: intact ventilatory control despite hemodynamic and pulmonary abnormalities. Circulation 77 (3), 552–559 (1988)

    Google Scholar 

  62. Swan, G.W.: Applications of optimal control theory in biomedicine. Marcel Dekker, Inc. New York, 1984

  63. Timischl, S.: A Global Model of the Cardiovascular and Respiratory System. PhD thesis, Karl-Franzens-Universität Graz, 1998

  64. Timischl, S., Batzel, J.J., Kappel, F.: Modeling the human cardiovascular-respiratory control system: an optimal control application to the transition to non-REM sleep. Spezialforschungsbereich F-003 Technical Report 190, Karl-Franzens-Universität, 2000

  65. Topor, Z.L., Johannson, L., Kasprzyk, J., Remmers, J.E.: Dynamic ventilatory response to CO2 in congestive heart failure patients with and without central sleep apnea. J. Appl. Physiol. 91 (1), 408–416 (2001)

    Google Scholar 

  66. Tsuruta, H., Sato, T., Shirataka, M., Ikeda, N.: Mathematical model of the cardiovascular mechanics for diagnostic analysis and treatment of heart failure: part 1 model description and theoretical analysis. Med. Biol. Eng. Comp. 32 (1), 3–11 (1994)

    Google Scholar 

  67. Wasserman, K., Whipp, B.J., Casaburi, R.: Respiratory control during exercise. In: A.P. Fishman, N.S. Cherniack, J.G. Widdicombe, S.R. Geiger (eds.) Handbook of Physiology, Section 3: The Respiratory System, Volume II, Control of Breathing, Part 2, Am. Phys. Soc. Bethesda, Maryland, 1986

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry J. Batzel.

Additional information

Supported by FWF (Austria) under grant F310 as a subproject of the Special Research Center F003 “Optimization and Control”

Mathematics Subject Classification (2000): 92C30, 49J15

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batzel, J., Kappel, F. & Timischl-Teschl, S. A cardiovascular-respiratory control system model including state delay with application to congestive heart failure in humans. J. Math. Biol. 50, 293–335 (2005). https://doi.org/10.1007/s00285-004-0293-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-004-0293-3

Key words or phrases:

Navigation