Skip to main content
Log in

Agricultural Waste Management by Production of Second-Generation Bioethanol from Sugarcane Bagasse Using Indigenous Yeast Strain

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

In the wake of rapid industrialization and burgeoning transportation networks, the escalating demand for fossil fuels has accelerated the depletion of finite energy reservoirs, necessitating urgent exploration of sustainable alternatives. To address this, current research is focusing on renewable fuels like second-generation bioethanol from agricultural waste such as sugarcane bagasse. This approach not only circumvents the contentious issue of food-fuel conflicts associated with biofuels but also tackles agricultural waste management. In the present study indigenous yeast strain, Clavispora lusitaniae QG1 (MN592676), was isolated from rotten grapes to ferment xylose sugars present in the hemicellulose content of sugarcane bagasse. To liberate the xylose sugars, dilute acid pretreatment was performed. The highest reducing sugars yield was 1.2% obtained at a temperature of 121 °C for 15 min, a solid-to-liquid ratio of 1:25 (% w/v), and an acid concentration of 1% dilute acid H2SO4 that was significantly higher (P < 0.001) yield obtained under similar conditions at 100 °C for 1 h. The isolated strain was statistically optimized for fermentation process by Plackett–Burman design to achieve the highest ethanol yield. Liberated xylose sugars were completely utilized by Clavispora lusitaniae QG1 (MN592676) and gave 100% ethanol yield. This study optimizes both fermentation process and pretreatment of sugarcane bagasse to maximize bioethanol yield and demonstrates the ability of isolated strain to effectively utilize xylose as a carbon source. The desirable characteristics depicted by strain Clavispora lusitaniae shows its promising utilization in management of industrial waste like sugarcane bagasse by its conversion into renewable biofuels like bioethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All the data provided is based on experiments conducted during research and is reproducible.

References

  1. Uihlein A, Schebek L (2009) Environmental impacts of a lignocellulose feedstock biorefinery system: an assessment. Biomass Bioenerg 33(5):793–802. https://doi.org/10.1016/j.biombioe.2008.12.001

    Article  CAS  Google Scholar 

  2. Lynd LR, Wang MQ (2003) A product-nonspecific framework for evaluating the potential of biomass-based products to displace fossil fuels. J Ind Ecol 7(3–4):17–32. https://doi.org/10.1162/108819803323059370

    Article  Google Scholar 

  3. Asif M (2009) Sustainable energy options for Pakistan. Renew Sustain Energy Rev 13(4):903–909

    Article  Google Scholar 

  4. Reijnders L (2006) Conditions for the sustainability of biomass based fuel use. Energy Policy 34(7):863–876

    Article  Google Scholar 

  5. Woli P, Paz J (2013) Biomass yield and utilization rate effects on the sustainability and environment-friendliness of Maize Stover-and switchgrass-based ethanol production. Int J Environ Bioener 7(1):28–42

    Google Scholar 

  6. Rocha GJM, Silva VFN, Martín C, Gonçalves AR, Nascimento VM, Souto-Maior AM (2013) Effect of xylan and lignin removal by hydrothermal pretreatment on enzymatic conversion of sugarcane bagasse cellulose for second generation ethanol production. Sugar Tech 15(4):390–398. https://doi.org/10.1007/s12355-013-0218-9

    Article  CAS  Google Scholar 

  7. Ravindranath NH, Sita Lakshmi C, Manuvie R, Balachandra P (2011) Biofuel production and implications for land use, food production and environment in India. Energy Policy 39(10):5737–5745

    Article  Google Scholar 

  8. Ajanovic A (2011) Biofuels versus food production: Does biofuels production increase food prices? Energy 36(4):2070–2076

    Article  Google Scholar 

  9. Chwieduk D (2003) Towards sustainable-energy buildings. Appl Energy 76(1–3):211–217

    Article  Google Scholar 

  10. Agbogbo FK, Coward-Kelly G (2008) Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotechnol Lett 30(9):1515–1524. https://doi.org/10.1007/s10529-008-9728-z

    Article  CAS  PubMed  Google Scholar 

  11. Hofsetz K, Silva MA (2012) Brazilian sugarcane bagasse: energy and non-energy consumption. Biomass Bioenerg 46:564–573. https://doi.org/10.1016/j.biombioe.2012.06.038

    Article  Google Scholar 

  12. Arevalo-Gallegos A, Ahmad Z, Asgher M, Parra-Saldivar R, Iqbal HMN (2017) Lignocellulose: a sustainable material to produce value-added products with a zero waste approach—a review. Int J Biol Macromol 99:308–318. https://doi.org/10.1016/j.ijbiomac.2017.02.097

    Article  CAS  PubMed  Google Scholar 

  13. Rocha GJM, Martín C, da Silva VFN, Gómez EO, Gonçalves AR (2012) Mass balance of pilot-scale pretreatment of sugarcane bagasse by steam explosion followed by alkaline delignification. Biores Technol 111:447–452. https://doi.org/10.1016/j.biortech.2012.02.005

    Article  CAS  Google Scholar 

  14. Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels, Bioprod Biorefin 1(2):119–134. https://doi.org/10.1002/bbb.4

    Article  CAS  Google Scholar 

  15. Prasad S, Kumar S, Yadav KK, Choudhry J, Kamyab H, Bach Q-V, Sheetal KR, Kannojiya S, Gupta N (2020) Screening and evaluation of cellulytic fungal strains for saccharification and bioethanol production from rice residue. Energy 190:116422. https://doi.org/10.1016/j.energy.2019.116422

    Article  CAS  Google Scholar 

  16. Kumari D, Singh R (2018) Pretreatment of lignocellulosic wastes for biofuel production: a critical review. Renew Sustain Energy Rev 90:877–891. https://doi.org/10.1016/j.rser.2018.03.111

    Article  CAS  Google Scholar 

  17. Saini JK, Saini R, Tewari L (2014) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech 5(4):337–353. https://doi.org/10.1007/s13205-014-0246-5

    Article  PubMed  PubMed Central  Google Scholar 

  18. Torres F (2016) Xylose fermentation by saccharomyces cerevisiae: challenges and prospects. Int J Mol Sci 17(3):207. https://doi.org/10.3390/ijms17030207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Portero Barahona P, Bastidas Mayorga B, Martín-Gil J, Martín-Ramos P, Carvajal Barriga EJ (2020) Cellulosic ethanol: improving cost efficiency by coupling semi-continuous fermentation and simultaneous saccharification strategies. Processes 8(11):1459. https://doi.org/10.3390/pr8111459

    Article  CAS  Google Scholar 

  20. Ndubuisi IA, Amadi CO, Nwagu TN, Murata Y, Ogbonna JC (2023) Non-conventional yeast strains: unexploited resources for effective commercialization of second generation bioethanol. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2023.108100

    Article  PubMed  Google Scholar 

  21. Nweze JE, Ndubuisi I, Murata Y, Omae H, Ogbonna JC (2021) Isolation and evaluation of xylose-fermenting thermotolerant yeasts for bioethanol production. Biofuels 12(8):961–970. https://doi.org/10.1080/17597269.2018.1564480

    Article  CAS  Google Scholar 

  22. Baptista M, Domingues L (2022) Kluyveromyces marxianus as a microbial cell factory for lignocellulosic biomass valorisation. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2022.108027

    Article  PubMed  Google Scholar 

  23. Hashmi M, Khan TK, Khan W, Hasan F, Hameed A, Khan S, Badshah M, Shah AA (2018) Comparison between a newly isolated yeast strain and lalvin EC-1118 for enhanced ethanol yield from sugarcane molasses employing batch and modified fed-batch fermentation. J Biobased Mater Bioenergy 12(1):134–142. https://doi.org/10.1166/jbmb.2018.1749

    Article  CAS  Google Scholar 

  24. Alonso-Riaño P, Illera AE, Benito-Román O, Melgosa R, Bermejo-López A, Beltrán S, Sanz MT (2024) Degradation kinetics of sugars (glucose and xylose), amino acids (proline and aspartic acid) and their binary mixtures in subcritical water: effect of Maillard reaction. Food Chem. https://doi.org/10.1016/j.foodchem.2024.138421

    Article  PubMed  Google Scholar 

  25. Ruriani E, Sunarti TC, Meryandini A (2012) Yeast isolation for bioethanol production. HAYATI J Biosci 19(3):145–149. https://doi.org/10.4308/hjb.19.3.145

    Article  Google Scholar 

  26. Stirling D (2003) DNA extraction from fungi, yeast, and bacteria. PCR Protocols. https://doi.org/10.1385/1-59259-384-4:53

    Article  Google Scholar 

  27. Anh NM, Huyen VTT, Quyen VT, Dao PT, Quynh DT, Huong DTM et al (2024) Antimicrobial and cytotoxic secondary metabolites from a marine-derived fungus penicillium citrinum VM6. Curr Microbiol 81(1):32. https://doi.org/10.1007/s00284-023-03568-7

    Article  CAS  Google Scholar 

  28. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  PubMed  Google Scholar 

  29. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing plat- forms. Mol Biol Evol 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Talukder AA, Adnan N, Siddiqa A, Miah R, Tuli JF, Khan ST, Dey SK, Lertwattanasakul N, Yamada M (2019) Fuel ethanol production using xylose assimilating and high ethanol producing thermosensitive Saccharomyces cerevisiae isolated from date palm juice in Bangladesh. Biocatal Agric Biotechnol 18:101029. https://doi.org/10.1016/j.bcab.2019.101029

    Article  Google Scholar 

  31. Jonglertjunya W, Makkhanon W, Siwanta T, Prayoonyong P (2014) Dilute acid hydrolysis of sugarcane bagasse for butanol fermentation. Chiang Mai J Sci 41(1):60–70

    CAS  Google Scholar 

  32. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Biores Technol 83(1):1–11. https://doi.org/10.1016/s0960-8524(01)00212-7

    Article  CAS  Google Scholar 

  33. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428. https://doi.org/10.1021/ac60147a030

    Article  CAS  Google Scholar 

  34. Madhavan A, Tamalampudi S, Srivastava A, Fukuda H, Bisaria VS, Kondo A (2009) Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization. Appl Microbiol Biotechnol 82(6):1037–1047. https://doi.org/10.1007/s00253-008-1818-2

    Article  CAS  PubMed  Google Scholar 

  35. Das S, Das D, Goyal A (2014) Statistical optimization of fermentation process parameters by Taguchi orthogonal array design for improved bioethanol production. J Fuels 2014:1–11. https://doi.org/10.1155/2014/419674

    Article  CAS  Google Scholar 

  36. Raza QUA, Bashir MA, Rehim A, Sial MU, Ali Raza HM, Atif HM et al (2021) Sugarcane industrial byproducts as challenges to environmental safety and their remedies: a review. Water 13(24):3495. https://doi.org/10.3390/w13243495

    Article  CAS  Google Scholar 

  37. Balwan WK, Kour S (2021) A Systematic review of biofuels: the cleaner energy for cleaner environment. Indian J Sci Res 12(1):135–142. https://doi.org/10.32606/IJSR.V12.I1.00025

    Article  CAS  Google Scholar 

  38. Lavarack BP, Griffin GJ, Rodman D (2002) The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products. Biomass Bioenerg 23(5):367–380. https://doi.org/10.1016/s0961-9534(02)00066-1

    Article  CAS  Google Scholar 

  39. Esteghlalian A, Hashimoto AG, Fenske JJ, Penner MH (1997) Modeling and optimization of the dilute-sulfuric-acid pretreatment of corn stover, poplar and switchgrass. Biores Technol 59(2–3):129–136. https://doi.org/10.1016/s0960-8524(97)81606-9

    Article  CAS  Google Scholar 

  40. Tizazu BZ, Moholkar VS (2018) Kinetic and thermodynamic analysis of dilute acid hydrolysis of sugarcane bagasse. Biores Technol 250:197–203. https://doi.org/10.1016/j.biortech.2017.11.032

    Article  CAS  Google Scholar 

  41. Kapoor M, Semwal S, Gaur R, Kumar R, Gupta RP, Puri SK (2017) The pretreatment technologies for deconstruction of lignocellulosic biomass. Energy Environ Sustain. https://doi.org/10.1007/978-981-10-7431-8_17

    Article  Google Scholar 

  42. Amenaghawon A, Ogbeide S, Okieimen C (2014) Statistical experimental design for the optimisation of dilute sulphuric acid hydrolysis of oil palm empty fruit bunch. SA J Chem Eng 19(2):32–41

    Google Scholar 

  43. Dimopoulou M, Kontogiorgos V (2019) Soluble dietary fibres from sugarcane bagasse. Int J Food Sci Technol 55(5):1943–1949. https://doi.org/10.1111/ijfs.14445

    Article  CAS  Google Scholar 

  44. Aguilar R, Ramı́rez JA, Garrote G, Vázquez M (2002) Kinetic study of the acid hydrolysis of sugar cane bagasse. J Food Eng 55(4):309

    Article  Google Scholar 

  45. Liu ZL, Dien BS (2022) Cellulosic ethanol production using a dual functional novel yeast. Int J Microbiol 2022:1–12. https://doi.org/10.1155/2022/7853935

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Microbiology, Quaid-i-Azam University Islamabad, Pakistan for providing facilities for this research work.

Funding

This study is a part of NRPU project (20-1482NRPU/R&D/HEC/2021). The financial support to accomplish this research was provided by Higher Education Commission of Pakistan.

Author information

Authors and Affiliations

Authors

Contributions

SA, QAR, MB conceived and designed the work. AH, WS performed statistical analysis, review and edit the manuscript. SA, QAR and FR performed the experiments and isolated strains from collected samples. SA, QAR, MB and AH acquired, analyzed, and interpreted the data. MB, AH, RG, WS,MA reviewed the manuscript, MB supervised the research work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Malik Badshah.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1992 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S., Rana, Q.u.A., Riaz, F. et al. Agricultural Waste Management by Production of Second-Generation Bioethanol from Sugarcane Bagasse Using Indigenous Yeast Strain. Curr Microbiol 81, 161 (2024). https://doi.org/10.1007/s00284-024-03668-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-024-03668-y

Navigation