Skip to main content
Log in

Fungal Cultivars of Higher Attine Ants Promote Escovopsis Chemotropism

  • Original Paper
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

In varied environments, microorganisms search for partners or nutritional resources using chemical signals. Microbes are drawn (chemotaxis) or grow directionally (chemotropism) towards the chemical source, enabling them to establish and maintain symbiosis. The hypocrealean fungi Escovopsis enhance their growth towards the basidiomycete fungus Leucoagaricus gongylophorus, which is cultivated by leaf-cutting attine ants for food. Although directional growth is well documented in this symbiosis, it is unclear whether non-volatile or volatile organic compounds participate in the interaction between cultivar and Escovopsis, and which specific chemical compounds might attract and induce chemotropism. In this study, we examined the growth responses of Escovopsis isolates to non-volatile and volatile organic compounds produced by fungal cultivars of higher attine ants. We also isolated and identified molecules released by the ant-cultivar and assessed the chemotropism of Escovopsis towards them. Our results indicate that the growth of Escovopsis is stimulated in the presence of both non-volatile and volatile compounds from fungal cultivars. We also identified three isomeric diketopiperazines molecules from crude extracts of the ant cultivar, suggesting that these might play a role in Escovopsis chemotropism. Our findings provide insights into the complex chemical interactions that govern the association between Escovopsis and fungal cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Materials

The datasets generated and analyzed during the current study are available in the supplementary material.

References

  1. Braga RM, Dourado MN, Berthoin S, Thevenet D, Nourry C, Nottin S, Bosquet L (2016) Microbial interactions: ecology in a molecular perspective. Braz J Microbiol 47:86–98. https://doi.org/10.1016/j.bjm.2016.10.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Scherlach K, Hertweck C (2017) Mediators of mutualistic microbe-microbe interactions. Nat Prod Rep 35:303–308. https://doi.org/10.1039/C7NP00035A

    Article  Google Scholar 

  3. Chet I, Mitchell R (1976) Ecological aspects of microbial chemotactic behavior. Ann Rev Microbiol 30:221–239. https://doi.org/10.1146/annurev.mi.30.100176.001253

    Article  CAS  Google Scholar 

  4. Raina J, Fernandez V, Lambert B, Stocker R, Seymour JR (2019) The role of microbial motility and chemotaxis in symbiosis. Nat Rev Microbiol 17:284–294. https://doi.org/10.1038/s41579-019-0182-9

    Article  CAS  PubMed  Google Scholar 

  5. Gadkar V, David-Schwartz R, Kinik T, Kapulnik Y (2001) Arbuscular mycorrhizal fungal colonization. Factors involved in host recognition. Plant Physiol 127:1493–1499. https://doi.org/10.1104/pp.010783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Palmieri D, Vitale S, Lima G, Di Pietro A, Turrà D (2020) A bacterial endophyte exploits chemotropism of a fungal pathogen for plant colonization. Nat Commun 11:5264. https://doi.org/10.1038/s41467-020-18994-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Turrà D, El Ghalid M, Rossi F, Di Pietro A (2015) Fungal pathogen uses sex pheromone receptor for chemotropic sensing of host plant signals. Nature 527:521–524. https://doi.org/10.1038/nature15516

    Article  CAS  PubMed  Google Scholar 

  8. Brand A, Gow NAR (2009) Mechanisms of hypha orientation of fungi. Curr Opin Microbiol 12:350–357. https://doi.org/10.1016/j.mib.2009.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Turrà D, Di Pietro A (2015) Chemotropic sensing in fungus–plant interactions. Curr Opin Plant Biol 26:135–140. https://doi.org/10.1016/j.pbi.2015.07.004

    Article  CAS  PubMed  Google Scholar 

  10. Braunsdorf C, Mailänder-Sánchez D, Schaller M (2016) Fungal sensing of host environment. Cell Microbiol 18:1188–1200. https://doi.org/10.1111/cmi.12610

    Article  CAS  PubMed  Google Scholar 

  11. Fomina M, Ritz K, Gadd GM (2000) Negative fungal chemotropism to toxic metals. FEMS Microbiol Lett 193:207–211. https://doi.org/10.1111/j.1574-6968.2000.tb09425.x

    Article  CAS  PubMed  Google Scholar 

  12. Demain AL, Fang A (2001) The natural functions of secondary metabolites. In: Scheper T, Ulber R (eds) Advances of biochemical engineering/biotechnology, vol 69. Springer, Berlin

    Google Scholar 

  13. Boruta T (2018) Uncovering the repertoire of fungal secondary metabolites: from Fleming’s laboratory to the International Space Station. Bioengineered 9:12–16. https://doi.org/10.3389/fpls.2021.79033

    Article  CAS  PubMed  Google Scholar 

  14. Demain AL (1986) Regulation of secondary metabolism in fungi. Pure Appl Chem 58:219–226. https://doi.org/10.1351/pac198658020219

    Article  CAS  Google Scholar 

  15. Tsujiyama S, Minami M (2005) Production of phenol-oxidizing enzymes in the interaction between white-rot fungi. Mtcoscience 46:268–271. https://doi.org/10.1007/s10267-005-0243-y

    Article  CAS  Google Scholar 

  16. Alam B, Li J, Ge Q, Khan MA, Göng J et al (2021) Endophytic fungi: from symbiosis to secondary metabolite communications or vice versa? Front Plant Sci 12:791033. https://doi.org/10.3389/fpls.2021.79033

    Article  PubMed  PubMed Central  Google Scholar 

  17. Weber NA (1972) The fungus-culturing behavior of ants. Ameri Zool 12:577–587

    Article  Google Scholar 

  18. Batey SFD, Greco C, Hutchings MI, Wilkinson B (2020) Chemical warfare between fungus-growing ants and their pathogens. Curr Opin Chem Biol 59:172–181. https://doi.org/10.1016/j.cbpa.2020.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Currie CR, Mueller UG, Malloch D (1999) The agricultural pathology of ant fungus gardens. Proc Natl Acad Sci USA 96:7998–8002. https://doi.org/10.1073/pnas.96.14.7998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jiménez-Gómez I, Barcoto MO, Montoya QV, Goes AC, Monteiro LSVE, Bueno OC, Rodrigues A (2021) Host susceptibility modulates Escovopsis pathogenic potential in the fungiculture of higher Attine ants. Front Microbiol 12:673444. https://doi.org/10.3389/fmicb.2021.673444

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mendonça DMF, Caixeta MCS, Martins GL, Moreira CC, Kloss TG, Elliot SL (2021) Low virulence of the fungi Escovopsis and Escovopsioides to a leaf-cutting ant-fungus symbiosis. Front Microbiol 12:673445. https://doi.org/10.3389/fmicb.2021.673445

    Article  PubMed  PubMed Central  Google Scholar 

  22. Folgarait PJ, Marfetán JA, Cafaro MJ (2011) Growth and conidiation response of Escovopsis weberi (Ascomycota: Hypocreales) against the fungal cultivar of Acromyrmex lundii (Hymenoptera: Formicidae). Environ Entomol 40:342–349. https://doi.org/10.1603/EN10111

    Article  Google Scholar 

  23. Masiulionis VE, Pagnocca FC (2020) In vitro study of volatile organic compounds produced by the mutualistic fungus of leaf-cutter ants and the antagonist Escovopsis. Fungal Ecol 48:100986. https://doi.org/10.1016/j.funeco.2020.100986

    Article  Google Scholar 

  24. Gerardo NM, Jacobs SR, Currie CR, Mueller UG (2006) Ancient host-pathogen associations maintained by specificity of chemotaxis and antibiosis. PLoS Biol 4:e235. https://doi.org/10.1371/journal.pbio.0040235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Boya PC, Fernandéz-Marín H, Mejia LC, Spadafora C, Dorrestein PC, Gutierrez M (2017) Imaging mass spectrometry and MS/MS molecular networking reveals chemical interactions among cuticular bacteria and pathogenic fungi associated with fungus-growing ants. Sci Rep 7:5604. https://doi.org/10.1038/s41598-017-05515-6

    Article  CAS  Google Scholar 

  26. Heine D, Holmes NA, Worsley SF, Santos ACA, Inonocent TM et al (2018) Chemical warfare between leafcutter ant symbionts and a co-evolved pathogen. Nat Commun 9:1–11. https://doi.org/10.1038/s41467-018-04520-1

    Article  CAS  Google Scholar 

  27. Dhodary B, Schilg M, Wirth R, Spiteller DS (2018) Secondary metabolites from Escovopsis weberi and their role in attacking the garden fungus of leaf-cutting ants. Chem Euro J 24:4445–4452. https://doi.org/10.1002/chem.201706071

    Article  CAS  Google Scholar 

  28. Currie CR, Stuart AE (2001) Weeding and grooming of pathogens in agriculture by ants. Proc R Soc Lond B Biol Sci 268:1033–1039. https://doi.org/10.1098/rspb.2001.1605

    Article  CAS  Google Scholar 

  29. Goes AC, Barcoto MO, Kooij PW, Bueno OC, Rodrigues A (2020) How do leaf-cutting ants recognize antagonistic microbes in their fungal crops? Front Ecol Evol 8:95. https://doi.org/10.3389/fevo.2020.00095

    Article  Google Scholar 

  30. Staub GM, Gloer KB, Gloer JB, Wicklow DT, Dowd PF (1993) New paspalinine derivatives with antiinsect an activity from the sclerotia of Aspergillus nomius. Tetra Lett 34:2569–2572. https://doi.org/10.1016/s0040-4039(00)77627-1

    Article  CAS  Google Scholar 

  31. Montoya QV (2023) Taxonomy and systematics of the fungus-growing ant associate Escovopsis (Hypocreaceae). Stud Mycol 106:349–397. https://doi.org/10.3114/sim.2023.106.06

  32. Pagnocca FC, Silva OA, Hebling-Beraldo MJ, Bueno OC, Fernandes JB, Vieira PC (1990) Toxicity of sesame extracts to the symbiotic fungus of leaf-cutting ants. Bull Entomol Res 80:349–352. https://doi.org/10.1017/s0007485300050550

    Article  Google Scholar 

  33. Silva-Pinhati AOC, Bacci M Jr, Siqueira CG, Silva A, Pagnocca FC, Bueno OC, Hebling MAJ (2005) Isolation and maintenance of symbiotic fungi of ants in the tribe Attini (Hymenopera: Formicidae). Neotro Entomol 34:1–5. https://doi.org/10.1590/s1519-566X2005000100001

    Article  Google Scholar 

  34. Abràmoff MD, Magalhães PK, Ram SJ (2004) Image processing with ImageJ. Biopho Intern 11:36–42

    Google Scholar 

  35. Noguchi K, Edgar B, Yulia RG, Konietschke F (2012) nparLD: an R software package for the nonparametric analysis of longitudinal data in factorial experiments. J Stat Soft 50:12

    Article  Google Scholar 

  36. R Core Team (2016) R: a language and environment for statistical computing. R Found Stat Comp, Austria

    Google Scholar 

  37. Karaman I, Sahin F, Güllüce M, Ögütçü H, Sengül M, Adigüzel A (2003) Antimicrobial activity of aqueous and methanol extracts of Juniperus oxycedrus. J Ethnophar 85:231–235

    Article  CAS  Google Scholar 

  38. Ostrotsky AE, Mizumoto KM, Lima LEM, Kaneko MT, Suzana O, Nishikawa OS, Freitas RB (2008) Métodos para avaliação da atividade antimicrobiana e determinação da concentração mínima inibitória (CMI) de plantas medicinais. Rev Bras Farma 18:301–307. https://doi.org/10.1590/S0102-695X2008000200026

    Article  Google Scholar 

  39. Mody JO, Adebiyi AO, Adeniyi BA (2004) Do Aloe vera and Ageratum conyzoides enhance the anti-microbial activity of traditional medicinal soft soaps (Osedudu)? J Ethnophar 92:57–60. https://doi.org/10.1016/j.jep.2004.01.018

    Article  CAS  Google Scholar 

  40. Strobel GA, Dirkse E, Sears J, Markworth C (2001) Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology 147:2943–2950. https://doi.org/10.1099/00221297-147-11-2943

    Article  CAS  PubMed  Google Scholar 

  41. Reynolds HT, Currie CR (2004) Pathogeniticity of Escovopsis weberi: the parasite of the attine ant–microbe symbiosis directly consumes the ant-cultivated fungus. Mycologia 96:955–959

    Article  PubMed  Google Scholar 

  42. Hung R, Lee S, Bennett JW (2015) Fungal volatile organic compounds and their role in ecosystems. Appl Microbiol Biotechnol 99:3395–3405. https://doi.org/10.1016/j.fbr.2012.07.001

    Article  CAS  PubMed  Google Scholar 

  43. Schmidt R, Etalo DW, de Jager V, Gerards S, Zweers H et al (2016) Microbial small talk: volatiles in fungal–bacterial interactions. Front Microbiol 6:1495. https://doi.org/10.3389/fmicb.2015.01495

    Article  PubMed  PubMed Central  Google Scholar 

  44. Li N, Alfiky A, Vaughan MM, Zang S (2016) Stop and smell the fungi: fungal volatile metabolites are overlooked signals involved in fungal interaction with plants. Fungal Biol Rev 39:134–144. https://doi.org/10.1016/j.fbr.2016.06.004

    Article  Google Scholar 

  45. Guo Y, Jud W, Weikl F, Ghirardo A, Junker RR et al (2021) Volatile organic compound patterns predict fungal trophic mode and lifestyle. Commun Biol 4:673. https://doi.org/10.1038/s42003-021-02198-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wheatley RE (2002) The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie Van Leeuwenhoek 81:357–364. https://doi.org/10.1023/a:1020592802234

    Article  CAS  PubMed  Google Scholar 

  47. Schmidt R, Cordovez V, de Boer W, Raaijmakers J, Garbeva P (2015) Volatile affairs in microbial interactions. ISME J 9:2329–2335. https://doi.org/10.1038/ismej.2015.42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fries N (1973) Effects of volatile organic compounds on the growth and development of fungi. Trans Br Mycol Soc 60:1–21

    Article  CAS  Google Scholar 

  49. Stotzky G, Schenck S (1976) Volatile organic compounds and microorganisms. CRC Crit Rev Microbiol 4:333–382

    Article  CAS  PubMed  Google Scholar 

  50. Ditengou FA, Müller A, Ronsekranz M, Felten J, Lasok H, van Doorn MM, Legué V, Palme K, Schnitzler J-P, Polle A (2015) Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nat Commun 6:6279. https://doi.org/10.1038/ncomms7279

    Article  CAS  PubMed  Google Scholar 

  51. Moisan K, Raaijmakers JM, Dicke M, Lucas-Barbosa D, Cordovez V (2021) Volatiles from soil-borne fungi affect directional growth of roots. Plant Cell Environ 44:339–345. https://doi.org/10.1111/pce.13890

    Article  CAS  PubMed  Google Scholar 

  52. Augustin JO, Simões TG, Dijksterhuis J, Elliot SL, Evans HC (2017) Putting the waste out: a proposed mechanism for transmission of the mycoparasite Escovopsis between leafcutter ant colonies. R Soc Open Sci 4:161013. https://doi.org/10.1098/rsos.161013

    Article  PubMed  PubMed Central  Google Scholar 

  53. Tian X, Ding H, Ke W, Wang L (2021) Quorum sensing in fungal species. Annu Rev Microbiol 75:440–469. https://doi.org/10.1146/annurev-micro-060321-045510

    Article  CAS  Google Scholar 

  54. Nencovic M, Jakybikova L, Viden I, Farkas V (2008) Induction of conidiation by endogenous volatile compounds in Trichoderma spp. FEMS Microbiol Lett 284:231–236. https://doi.org/10.1111/j.1574-6968.2008.01202.x

    Article  CAS  Google Scholar 

  55. Schultz-Bohm K, Martín-Sánchez L, Garbeva P (2017) Microbial volatiles: small molecules with an important role in intra- and inter-kingdom interactions. Front Microbiol 8:2484. https://doi.org/10.3389/fmicb.2017.02484

    Article  Google Scholar 

  56. Guo Y, Jud W, Weikl F, Ghirardo A, Junker RR, Polle A, Benz PJ, Pritsch K, Schnitzler J, Rosenkranz M (2021) Volatile organic compound patterns predict fungal trophic mode and lifestyle. Commun Biol 4:673. https://doi.org/10.1038/s42003-021-02198-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cale JA, Collignon RM, Klutsch JG, Kanekar SS, Hussain A, Erbilgin N (2016) Fungal volatiles can act as carbon sources and semiochemicals to mediate interspecific interactions among bark beetle-associated fungal symbionts. PLoS ONE 11:e0162197. https://doi.org/10.1371/journal.pone.0162197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Garcia-Pajon CM, Collado IG (2003) Secondary metabolites isolated from Colletrotrichum species. Nat Prod Rep 20:246. https://doi.org/10.1002/chin.200348224

    Article  Google Scholar 

  59. Wang Y, Mueller UG, Clardy J (1998) Antifungal diketopiperazines from symbiotic fungus of fungus-growing ant Cyphomyrmex minutus. J Chem Ecol 25:935–941

    Article  Google Scholar 

  60. Davies J (2006) Are antibiotics naturally antibiotics? J Ind Microbiol Biotech 33:496–499. https://doi.org/10.1007/s10295-006-0112-5

    Article  CAS  Google Scholar 

  61. Weinhold AR, Feeny PP (1966) Allelochemics: chemical interactions between species. Chemical agents are of major significance in the adaptation of species and organization of communities. Sci New Ser 171:757–770

    Google Scholar 

  62. Silva TL, Toffano L, Fernandes JB, das Graças MF, da Silva F, de Souza LRF, Vieira PC (2020) Mycotoxins from Fusarium proliferatum: new inhibitors of papain-like cysteine proteases. Braz J Microbiol 51:1169–1175. https://doi.org/10.1007/s42770-020-00256-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Dr. Irina Jiménez-Goméz for her invaluable contribution in collecting the ant colony from which the fungal cultivar IJ2016 was initially isolated. We also extend our thanks to Daiane Cristina Sass, Daiane Polezel, Fernando Carlos Pagnocca, and Rodolfo Bizarria Jr for their technical assistance. We are appreciative of the research team at the Laboratory of Fungal Ecology and Systematics (UNESP, Rio Claro, Brazil) for their constructive feedback on this manuscript. In addition, we thank João Batista Fernandes for providing facilities at UFSCar (Department of Chemistry, UFSCar, Brazil).

Funding

The authors express their gratitude to the “Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)” for providing financial support (grant #2019/03746-0 to AR) and a scholarship (#2018/12481-7 to KBO). Additional financial support was received through the FAPESP Thematic Project (#2012/25299-6) “Integrated studies for leaf-cutting ant control”, granted to João Batista Fernandes (Department of Chemistry, UFSCar, Brazil). The study was also supported by CAPES under Financial Code 001. AR extends thanks to the “Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)” for the fellowship (grant #305269/2018-6).

Author information

Authors and Affiliations

Authors

Contributions

KBO, PCV, ADS, and AR conceptualized and designed the research. KBO and AR were responsible for collecting the materials, while KBO and ADS conducted the experimental assays. The initial draft of the manuscript was composed by KOB and AR, and subsequently refined by ACG and AR. All authors provided feedback on earlier versions of the manuscript and approved the final version.

Corresponding author

Correspondence to Andre Rodrigues.

Ethics declarations

Conflict of Interest

Not applicable.

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 801 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, K.B., Goes, A.C., Silva, A.D. et al. Fungal Cultivars of Higher Attine Ants Promote Escovopsis Chemotropism. Curr Microbiol 81, 37 (2024). https://doi.org/10.1007/s00284-023-03552-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03552-1

Navigation