Skip to main content
Log in

Recombineering-Mediated Sinorhizobium meliloti Rm1021 Gene Deletion

  • Short Communication
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Sinorhizobium meliloti Rm1021 (S. meliloti Rm1021) is a Gram-negative, soil-dwelling α-proteobacterium which serves as a model microorganism for the studies of symbiotic nitrogen fixation. The S. meliloti Rm1021 genome consists of one chromosome and two megaplasmids, pSymA and pSymB. Gene deletion is an essential tool for the elucidation of gene function and generation of mutants with improved properties. However, only two gene deletion methods, counterselectable marker sacB-based and FLP/FRT, Cre/loxP site-specific recombination, have been reported for S. meliloti Rm1021 gene deletion. Both methods require time-consuming and tedious gene cloning and conjugation steps. Herein, a λ Red recombineering-mediated gene deletion strategy is reported. The mutant was obtained via electroporating overlap-extension PCR-generated linear targeting DNA into Red-proficient cells. One gene each from the S. meliloti Rm1021 chromosome, megaplasmid SymA and pSymB was deleted, with deletion efficiency up to 100%. The straightforward and highly efficient recombineering procedure holds the promise to be a general gene manipulation method for S. meliloti Rm1021.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Galibert F, Finan TM, Long SR et al (2001) The composite genome of thelegume symbiont Sinorhizobium meliloti. Science 293(5530):668–672. https://doi.org/10.1126/science.1060966

    Article  CAS  Google Scholar 

  2. Ferri L, Gori A, Biondi EG et al (2010) Plasmid electroporation of Sinorhizobium strains: the role of the restriction gene hsdR in type strain Rm1021. Plasmid 63(3):128–135. https://doi.org/10.1016/j.plasmid.2010.01.001

    Article  CAS  Google Scholar 

  3. Jones KM (2012) Increased production of the exopolysaccharide succinoglycan enhances Sinorhizobium meliloti 1021 symbiosis with the host plant Medicago truncatula. J Bacteriol 194(16):4322–4331. https://doi.org/10.1128/JB.00751-12

    Article  CAS  Google Scholar 

  4. Barnett MJ, Solow-Cordero DE, Long SR (2019) A high-throughput system to identify inhibitors of Candidatus Liberibacter asiaticus transcription regulators. Proc Natl Acad Sci USA 116(36):18009–18014. https://doi.org/10.1073/pnas.1905149116

    Article  CAS  Google Scholar 

  5. Ghosh P, Adolphsen KN, Yurgel SN et al (2021) Sinorhizobium medicae WSM419 genes that improve symbiosis between Sinorhizobium meliloti Rm1021 and Medicago truncatula Jemalong A17 and in other symbiosis systems. Appl Environ Microbiol 87(15):e0300420. https://doi.org/10.1128/AEM.03004-20

    Article  Google Scholar 

  6. House BL, Mortimer MW, Kahn ML (2004) New recombination methods for Sinorhizobium meliloti genetics. Appl Environ Microbiol 70(5):2806–2815. https://doi.org/10.1128/AEM.70.5.2806-2815.2004

    Article  CAS  Google Scholar 

  7. Harrison CL, Crook MB, Peco G et al (2011) Employing site-specific recombination for conditional genetic analysis in Sinorhizobium meliloti. Appl Environ Microbiol 77(12):3916–3922. https://doi.org/10.1128/AEM.00544-11

    Article  CAS  Google Scholar 

  8. Döhlemann J, Brennecke M, Becker A (2016) Cloning-free genome engineering in Sinorhizobium meliloti advances applications of Cre/loxP site-specific recombination. J Biotechnol 233:160–170. https://doi.org/10.1016/j.jbiotec.2016.06.033

    Article  CAS  Google Scholar 

  9. Murphy KC (1998) Use of bacteriophage λ recombination functions to promote gene replacement in Escherichia coli. J Bacteriol 180(8):2063–2071. https://doi.org/10.1128/JB.180.8.2063-2071.1998

    Article  CAS  Google Scholar 

  10. Murphy KC (2016) λ recombination and recombineering. EcoSal Plus. https://doi.org/10.1128/ecosalplus.ESP-0011-2015

    Article  Google Scholar 

  11. Wang HH, Isaacs FJ, Carr PA et al (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460(7257):894–898. https://doi.org/10.1038/nature08187

    Article  CAS  Google Scholar 

  12. Robertson WE, Funke LFH, de la Torre D et al (2021) Sense codon reassignment enables viral resistance and encoded polymer synthesis. Science 372(6546):1057–1062. https://doi.org/10.1126/science.abg3029

    Article  CAS  Google Scholar 

  13. Fels U, Gevaert K, Van Damme P (2020) Bacterial genetic engineering by means of recombineering for reverse genetics. Front Microbiol 11:548410. https://doi.org/10.3389/fmicb.2020.548410

    Article  Google Scholar 

  14. Zheng W, Wang X, Chen Y et al (2021) Recombineering facilitates the discovery of natural product biosynthetic pathways in Pseudomonas parafulva. Biotechnol J 16(8):e2000575. https://doi.org/10.1002/biot.202000575

    Article  CAS  Google Scholar 

  15. Zhang Q, Yan Z, Xu Y et al (2017) Characterization of inducible ccdB gene as a counterselectable marker in Escherichia coli recombineering. Curr Microbiol 74(8):961–964. https://doi.org/10.1007/s00284-017-1273-3

    Article  CAS  Google Scholar 

  16. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  17. Luo X, Yang Y, Ling W, et al (2016) Pseudomonas putida KT2440 markerless gene deletion using a combination of λ Red recombineering and Cre/loxP site-specific recombination. FEMS Microbiol Lett 363:fnw014. https://doi.org/10.1093/femsle/fnw014

  18. Khan SR, Gaines J, Roop RM 2nd et al (2008) Broad-host-range expression vectors with tightly regulated promoters and their use to examine the influence of TraR and TraM expression on Ti plasmid quorum sensing. Appl Environ Microbiol 74(16):5053–5062. https://doi.org/10.1128/AEM.01098-08

    Article  CAS  Google Scholar 

  19. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97(12):6640–6645. https://doi.org/10.1073/pnas.120163297

    Article  CAS  Google Scholar 

  20. Schäfer A, Tauch A, Jäger W et al (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145(1):69–73. https://doi.org/10.1016/0378-1119(94)90324-7

    Article  Google Scholar 

  21. Horton RM, Hunt HD, Ho SN et al (1989) Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77(1):61–68. https://doi.org/10.1016/0378-1119(89)90359-4

    Article  CAS  Google Scholar 

  22. Kovach ME, Elzer PH, Hill DS et al (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166(1):175–176. https://doi.org/10.1016/0378-1119(95)00584-1

    Article  CAS  Google Scholar 

  23. Yurgel SN, Mortimer MW, Rice JT et al (2013) Directed construction and analysis of a Sinorhizobium meliloti pSymA deletion mutant library. Appl Environ Microbiol 79(6):2081–2087. https://doi.org/10.1128/AEM.02974-12

    Article  CAS  Google Scholar 

  24. Ferguson GP, Roop RM 2nd, Walker GC (2002) Deficiency of a Sinorhizobium meliloti BacA mutant in alfalfa symbiosis correlates with alteration of the cell envelope. J Bacteriol 184(20):5625–5632. https://doi.org/10.1128/JB.184.20.5625-5632.2002

    Article  CAS  Google Scholar 

  25. Marlow VL, Haag AF, Kobayashi H et al (2009) Essential role for the BacA protein in the uptake of a truncated eukaryotic peptide in Sinorhizobium meliloti. J Bacteriol 191(5):1519–1527. https://doi.org/10.1128/JB.01661-08

    Article  CAS  Google Scholar 

  26. Arnold MF, Haag AF, Capewell S et al (2013) Partial complementation of Sinorhizobium meliloti bacA mutant phenotypes by the Mycobacterium tuberculosis BacA protein. J Bacteriol 195(2):389–398. https://doi.org/10.1128/JB.01445-12

    Article  CAS  Google Scholar 

  27. Filsinger GT, Wannier TM, Pedersen FB et al (2021) Characterizing the portability of phage-encoded homologous recombination proteins. Nat Chem Biol 17(4):394–402. https://doi.org/10.1038/s41589-020-00710-5

    Article  CAS  Google Scholar 

  28. Chen Z, Ling W, Shang G (2016) Recombineering and I-SceI-mediated Pseudomonas putida KT2440 scarless gene deletion. FEMS Microbiol Lett 363:fnw231. https://doi.org/10.1093/femsle/fnw231

    Article  CAS  Google Scholar 

  29. Oh JH, van Pijkeren JP (2014) CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res 42(17):e131. https://doi.org/10.1093/nar/gku623

    Article  CAS  Google Scholar 

  30. Wu Z, Chen Z, Gao X et al (2019) Combination of ssDNA recombineering and CRISPR-Cas9 for Pseudomonas putida KT2440 genome editing. Appl Microbiol Biotechnol 103(6):2783–2795. https://doi.org/10.1007/s00253-019-09654-w

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Sharon Long (Stanford University, USA), Dr. Stephen Farrand (University of Illinois at Urbana-Champaign, USA), Dr. Alan Collmer (Cornell University, USA), Dr. Barry Wanner (Purdue University, USA), and Dr. Michael Kovach (Louisiana State University, USA) for the generous gifts of strains and plasmids used in this research.

Funding

This research was generously supported by the National Natural Science Foundation of China (NSFC 82073742).

Author information

Authors and Affiliations

Authors

Contributions

GS conceived and designed the study. JY, QZ, and GZ conducted the experiments. All authors contributed to data interpretation and manuscript preparation. All authors read and approved final version of the manuscript.

Corresponding author

Correspondence to Guangdong Shang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors consent to the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1228 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Zhang, Q., Zhang, G. et al. Recombineering-Mediated Sinorhizobium meliloti Rm1021 Gene Deletion. Curr Microbiol 80, 76 (2023). https://doi.org/10.1007/s00284-023-03188-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03188-1

Navigation