Skip to main content
Log in

Different Multidrug-Resistant Salmonella spp. Serovars Isolated from Slaughter Calves in Southern Brazil

  • Short Communication
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Bovines are carriers of Salmonella spp., a relevant foodborne pathogen, acting as contamination sources in slaughterhouses. Calves are prone to infection, and antimicrobial resistance may occur in such bacteria. This study aimed to determine the prevalence and virulence determinants of Salmonella spp. recovered from calves in the Rio Grande do Sul state, Brazil. Eighty-five calves’ carcasses were evaluated (leather and veal meat). Thirteen Salmonella spp. isolates (8%) from 11 animals (13%) were obtained only from leather, indicating that contamination occurred before slaughter and that the meat was safe regarding this aspect. The serotypes S. Minnesota, S. Abony, S. Cerro, and S. Gafsa were identified, and all isolates were multidrug-resistant. The isolates had at least 19 virulence-related genes, and the blaOXA-48 resistance gene was detected in three (23%). The data suggest that treating infections caused by these bacteria may be difficult in animals from these farms and can also be an extended human health problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data Availability

The raw data and material of the present study are available upon request.

References

  1. USDA (2021) United States Agriculture Department. In: Cattle slaughter.http://www.usda.gov. Accessed 1 Jul 2021

  2. Aldai N, Lavín P, Kramer JKG et al (2012) Breed effect on quality veal production in mountain areas: emphasis on meat fatty acid composition. Meat Sci 92:687–696. https://doi.org/10.1016/j.meatsci.2012.06.024

    Article  CAS  Google Scholar 

  3. De AL, Grossa P, Grossa P et al (2017) Frequência de contaminação microbiológica em frigorífico. Rev Bras De Tecnol Agroind 11(1):2314–2331

    Google Scholar 

  4. Andino A, Hanning I (2015) Salmonella enterica: survival, colonization, and virulence differences among serovars. Sci World J. https://doi.org/10.1155/2015/520179

    Article  Google Scholar 

  5. Ministry of Agriculture L and S (2018) Normative Instruction No. 60, of October 16, 2018. Establishes the Integrated Control Areas - ACI between Brazil and neighboring countries. Brazil

  6. Bell BG, Schellevis F, Stobberingh E et al (2014) A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance. BMC Infect Dis 14:1–25. https://doi.org/10.1186/1471-2334-14-13

    Article  Google Scholar 

  7. Nhung NT, Van NTB, Van CN et al (2018) Antimicrobial residues and resistance against critically important antimicrobials in non-typhoidal Salmonella from meat sold at wet markets and supermarkets in Vietnam. Int J Food Microbiol 266:301–309. https://doi.org/10.1016/j.ijfoodmicro.2017.12.015

    Article  CAS  Google Scholar 

  8. Loiko MR, de Paula CMD, Langone ACJ et al (2016) Genotypic and antimicrobial characterization of pathogenic bacteria at different stages of cattle slaughtering in southern Brazil. Meat Sci 116:193–200. https://doi.org/10.1016/j.meatsci.2016.01.010

    Article  Google Scholar 

  9. Regulation C (2007) 1441/2007 (2007 Dec. 5). Amending regulation (EC) no 2073/2005 on microbiological criteria for foodstuffs. Official Journal of the European Union

  10. CLSI (2020) Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing, 30th ed

  11. Magiorakos AP, Srinivasan A, Carey RB et al (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x

    Article  CAS  Google Scholar 

  12. Borges KA, Furian TQ, De Souza SN et al (2017) Phenotypic and molecular characterization of Salmonella Enteritidis se86 isolated from poultry and Salmonellosis outbreaks. Foodborne Pathog Dis 14:742–754. https://doi.org/10.1089/fpd.2017.2327

    Article  CAS  Google Scholar 

  13. Borges KA, Furian TQ, Borsoi A et al (2013) Detection of virulence-associated genes in Salmonella enteritidis isolates from chicken in South of Brazil. Pesqui Vet Bras 33:1416–1422. https://doi.org/10.1590/S0100-736X2013001200004

    Article  Google Scholar 

  14. Babicki S, Arndt D, Marcu A et al (2016) Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res 44:W147–W153. https://doi.org/10.1093/NAR/GKW419

    Article  CAS  Google Scholar 

  15. Iglesias MA, Kroning IS, Decol LT et al (2017) Occurrence and phenotypic and molecular characterization of Listeria monocytogenes and Salmonella spp. in slaughterhouses in Southern Brazil. Food Res Int 100:96–101. https://doi.org/10.1016/j.foodres.2017.06.023

    Article  CAS  Google Scholar 

  16. Gutema FD, Abdi RD, Agga GE et al (2021) Assessment of beef carcass contamination with Salmonella and E. coli O 157 in slaughterhouses in Bishoftu Ethiopia. Int J Food Contam 8:1–9. https://doi.org/10.1186/s40550-021-00082-1

    Article  Google Scholar 

  17. da Silva FFP, Horvath MB, Silveira JG et al (2014) Occurrence of Salmonella spp. and generic Escherichia coli on beef carcasses sampled at a Brazilian slaughterhouse. Braz J Microbiol 45:17–23. https://doi.org/10.1590/S1517-83822014005000037

    Article  Google Scholar 

  18. Food E, Authority S (2016) The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2014. EFSA J. https://doi.org/10.2903/j.efsa.2016.4380

    Article  Google Scholar 

  19. Dantas STA, Camargo CH, Tiba-Casas MR et al (2020) Environmental persistence and virulence of Salmonella Isolated from a poultry slaughterhouse. Food Res Int. https://doi.org/10.1016/j.foodres.2019.108835

    Article  Google Scholar 

  20. Rodriguez-Rivera LD, Wright EM, Siler JD et al (2014) Subtype analysis of Salmonella isolated from subclinically infected dairy cattle and dairy farm environments reveals the presence of both human- and bovine-associated subtypes. Vet Microbiol 170:307–316. https://doi.org/10.1016/j.vetmic.2014.02.013

    Article  CAS  Google Scholar 

  21. Kovac J, Cummings KJ, Rodriguez-Rivera LD et al (2017) Temporal genomic phylogeny reconstruction indicates a geospatial transmission path of Salmonella cerro in the United States and a clade-specific loss of hydrogen sulfide production. Front Microbiol 8:1–12. https://doi.org/10.3389/fmicb.2017.00737

    Article  Google Scholar 

  22. De Azevedo EC, Martins BTF, Tiba Casas MR et al (2021) Multidrug resistance and virulence profiles of salmonella isolated from swine lymph nodes. Microb Drug Resist 27:562–570. https://doi.org/10.1089/mdr.2020.0120

    Article  CAS  Google Scholar 

  23. Baptista DQ, Santos AFM, Aquino MHC et al (2018) Prevalence and antimicrobial susceptibility of Salmonella spp. serotypes in broiler chickens and carcasses in the State of Rio de Janeiro. Brazil Pesqui Vet Bras 38:1278–1285. https://doi.org/10.1590/1678-5150-PVB-5289

    Article  Google Scholar 

  24. Pandini JA, da Pinto FGS, Muller JM et al (2015) Ocorrência e perfil de resistencia antimicrobiana de sorotipos de Salmonella spp. isolados de aviários do Paraná. Brasil Arq Inst Biol (Sao Paulo) 82:1–6. https://doi.org/10.1590/1808-1657000352013

    Article  Google Scholar 

  25. Maciel BM, Argôlo Filho RC, de Freitas ES et al (2004) Ocorrência de sorotipos exóticos de Salmonella encontrados em cães assintomáticos nos distritos do município de Ilhéus / BA - Brasil. Braz J Vet Res Anim Sci. https://doi.org/10.1590/s1413-95962004000400005

    Article  Google Scholar 

  26. Brazil, Ministry of Agriculture L and S (2009) Normative Instruction No. 26, of July 2009. Establishes technical regulations for manufacturing, quality control, marketing, and use of antimicrobial products for veterinary us

  27. Manafi L, Aliakbarlu J, Dastmalchi Saei H (2020) Antibiotic resistance and biofilm formation ability of Salmonella serotypes isolated from beef, mutton, and meat contact surfaces at retail. J Food Sci 85:2516–2522. https://doi.org/10.1111/1750-3841.15335

    Article  CAS  Google Scholar 

  28. Berger S, Alauzet C, Aissa N et al (2013) Characterization of a new bla OXA-48-carrying plasmid in enterobacteriaceae. Antimicrob Agents Chemother 57:4064–4067. https://doi.org/10.1128/AAC.02550-12

    Article  CAS  Google Scholar 

  29. Pitout JDD, Peirano G, Kock MM et al (2019) The Global ascendency of OXA-48-type carbapenemases. Clin Microbiol Rev. https://doi.org/10.1128/CMR.00102-19

    Article  Google Scholar 

  30. Balandraud A, Ben Khedher M, Hadjadj L et al (2021) Sepsis caused by Salmonella Paratyphi B producing an OXA-48 carbapenemase in a traveller. J Glob Antimicrob Resist 26:219–221. https://doi.org/10.1016/j.jgar.2021.05.020

    Article  CAS  Google Scholar 

  31. Tshitshi L, Manganyi MC, Montso PK et al (2020) Extended spectrum beta-lactamase-resistant determinants among carbapenem-resistant enterobacteriaceae from beef cattle in the North West Province, South Africa: a critical assessment of their possible public health implications. Antibiotics 9:1–19. https://doi.org/10.3390/antibiotics9110820

    Article  CAS  Google Scholar 

  32. Guzman-Otazo J, Gonzales-Siles L, Poma V et al (2019) Diarrheal bacterial pathogens and multi-resistant enterobacteria in the Choqueyapu River in La Paz, Bolivia. PLoS ONE 14:1–20. https://doi.org/10.1371/journal.pone.0210735

    Article  CAS  Google Scholar 

  33. Mirold S, Rabsch W, Rohde M et al (1999) Isolation of a temperate bacteriophage encoding the type effector protein SopE from an epidemic Salmonella typhimurium strain. Proc Natl Acad Sci USA 96(17):9845–9850

    Article  CAS  Google Scholar 

  34. Hopkins KL, Threlfall EJ (2004) Frequency and polymorphism of sopE in isolates of Salmonella enterica belonging to the ten most prevalent serotypes in England and Wales. J Med Microbiol 53:539–543. https://doi.org/10.1099/jmm.0.05510-0

    Article  Google Scholar 

  35. Carattoli A, Bertini A, Villa L et al (2005) Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 63:219–228. https://doi.org/10.1016/j.mimet.2005.03.018

    Article  CAS  Google Scholar 

  36. Miller RA, Wiedmann M (2016) The cytolethal distending toxin produced by nontyphoidal Salmonella serotypes javiana, montevideo, oranienburg, and mississippi induces DNA damage in a manner similar to that of serotype Typhi. MBio. https://doi.org/10.1128/mBio.02109-16

    Article  Google Scholar 

  37. Skyberg JA, Logue CM, Nolan LK (2006) Virulence genotyping of Salmonella spp. with multiplex PCR. Avian Dis 50:77–81. https://doi.org/10.1637/7417.1

    Article  Google Scholar 

  38. Lesnick ML, Reiner NE, Fierer J, Guiney DG (2001) The Salmonella spvB virulence gene encodes an enzyme that ADP-ribosylates actin and destabilizes the cytoskeleton of eukaryotic cells. Mol Microbiol 39:1464–1470. https://doi.org/10.1046/j.1365-2958.2001.02360.x

    Article  CAS  Google Scholar 

  39. Rowlands REG, Ristori CA, Ikuno AA et al (2014) Prevalência de resistência antimicrobiana e características de virulência em Salmonella spp. isoladas de alimentos associados ou não com salmonelose no Brasil. Rev Inst Med Trop Sao Paulo 56:461–467. https://doi.org/10.1590/S0036-46652014000600001

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the Secretariat of Agriculture, Livestock and Rural Development of Rio Grande do Sul and the State Slaughterhouse of Calves that allowed the collection of material for the study.

Funding

This work was funded by Financiadora de Estudos e Projetos (FINEP, Grant No. 01.12.0113.00). FQM is CNPq 2 research fellow (315255/2021-8).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, review, and editing: all authors; Data curation: ADAG, FQM; Sample collection: ADAG; Bacteriological analyses: ADAG, ASPN, BCL, JAO, LSM, MMC; Molecular biology analyses: TQF, KAB, FQM. Resources and founding acquisition: FQM, LBR; Writing: ADAG, FQM; All authors read, review and approved the final manuscript.

Corresponding author

Correspondence to Fabiana Quoos Mayer.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical Approval

The study was approved by the Committee on Ethics in the Use of Animals by the Instituto de Pesquisas Veterinárias Desidério Finamor under the number CEUA/IPVDF no 16/19.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabana, A.D.A., Núncio, A.S.P., Lopes, B.C. et al. Different Multidrug-Resistant Salmonella spp. Serovars Isolated from Slaughter Calves in Southern Brazil. Curr Microbiol 80, 11 (2023). https://doi.org/10.1007/s00284-022-03136-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-03136-5

Navigation