Skip to main content
Log in

Role of Plasmid in Pesticide Degradation and Metal Tolerance in Two Plant Growth-Promoting Rhizobacteria Bacillus cereus (NCIM 5557) and Bacillus safensis (NCIM 5558)

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Disha A (Bacillus cereus) and Disha B (Bacillus safensis) were isolated from pesticide-infested agricultural field and showed tolerance against pesticides, heavy metals, and antibiotics. The isolates exhibited PGPR activities in vitro as well as in field conditions in lentil (Lens culinaris) and cow pea (Vigna unguiculata). Both the Bacillus species could not be grown in mineral salt medium but efficiently grown in the media supplemented with pesticide (imidacloprid/carbendazim) demonstrating the utilization of pesticide as carbon/nitrogen source. The HPLC studies exhibited the pesticide (imidacloprid/carbendazim) degradation by both the bacteria. B. safensis showed better degradation of carbendazim (88.93%) and imidacloprid (82.48%) than that of B. cereus 78.07% and 49.12%, respectively. The bacterial isolates showed high concentration of heavy metal tolerance viz. lead, molybdenum, cadmium, copper, cobalt, and zinc, except mercury. Both the bacteria possessed single plasmid. The plasmid-cured isolates of B. cereus did not tolerate any pesticide, whereas that of B. safensis tolerated all the pesticides, like wild strains. The plasmid curing experiments did not affect the heavy metal tolerance ability of both the bacteria indicating the genomic nature of heavy metal tolerance genes, whereas pesticide resistance genes are plasmid-dependent in B. cereus but genomic in B. safensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Material

Available in supplementary materials. The other datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

Abbreviations

HPLC:

High-performance liquid chromatography

LB:

Luria Bertani

MS:

Mineral salt

MSM:

Mineral salt medium

MIC:

Minimum inhibitory concentration

NB:

Nutrient broth

NA:

Nutrient agar

PGPR:

Plant growth-promoting rhizobacteria

PGPF:

Plant growth-promoting fungi

References

  1. Zhao Q, Yue S, Bilal M, Hu H, Wang W, Zhang X (2017) Comparative genomic analysis of 26 Sphingomonas and Sphingobium strains: dissemination of bioremediation capabilities, biodegradation potential and horizontal gene transfer. Sci Total Environ 609:1238–1247. https://doi.org/10.1016/j.scitotenv.2017.07.249

    Article  CAS  PubMed  Google Scholar 

  2. Jacob JM, Karthik C, Saratale RG, Kumar SS, Prabakar D, Kadirvelu K et al (2018) Biological approaches to tackle heavy metal pollution: a survey of literature. J Environ Manag 217:56–70. https://doi.org/10.1016/j.jenvman.2018.03.077

    Article  CAS  Google Scholar 

  3. Barrios-Estrada C, de Jesús Rostro-Alanis M, Muñoz-Gutiérrez BD, Iqbal HM, Kannan S, Parra-Saldivar R (2018) Emergent contaminants: endocrine disruptors and their laccase-assisted degradation—a review. Sci Total Environ 612:1516–1531. https://doi.org/10.1016/j.scitotenv.2017.09.013

    Article  CAS  PubMed  Google Scholar 

  4. Rasheed T, Bilal M, Nabeel F, Iqbal HM, Li C, Zhou Y (2018) Fluorescent sensor based models for the detection of environmentally-related toxic heavy metals. Sci Total Environ 615:476–485. https://doi.org/10.1016/j.scitotenv.2017.09.126

    Article  CAS  PubMed  Google Scholar 

  5. Bilal M, Adeel M, Rasheed T, Zhao Y, Iqbal HM (2019) Emerging contaminants of high concern and their enzyme-assisted biodegradation—a review. Environ Int 124:336–353. https://doi.org/10.1016/j.envint.2019.01.011

    Article  CAS  PubMed  Google Scholar 

  6. Liu L, Bilal M, Duan X, Hafiz MN, Iqbal HMN (2019) Mitigation of environmental pollution by genetically engineered bacteria—current challenges and future perspectives. Sci Total Environ 667:444–454. https://doi.org/10.1016/j.scitotenv.2019.02.390

    Article  CAS  PubMed  Google Scholar 

  7. Pande V, Pandey SC, Sati D, Pande V, Samant M (2020) Bioremediation: an emerging effective approach towards environment restoration. Environ Sustain 3:91–103. https://doi.org/10.1007/s42398-020-00099-w

    Article  CAS  Google Scholar 

  8. Bilal M, Rasheed T, Nabeel F, Iqbal HM, Zhao Y (2019) Hazardous contaminants in the environment and their laccase-assisted degradation—a review. J Environ Manag 234:253–264. https://doi.org/10.1016/j.jenvman.2019.01.001

    Article  CAS  Google Scholar 

  9. Dasgupta J, Sikder J, Chakraborty S, Curcio S, Drioli E (2015) Remediation of textile effluents by membrane based treatment techniques: a state of the art review. J Environ Manag 147:55–72. https://doi.org/10.1016/j.jenvman.2014.08.008

    Article  CAS  Google Scholar 

  10. Garcia-Garcia JD, Sanchez-Thomas R, Moreno-Sanchez R (2016) Bio-recovery of nonessential heavy metals by intra-and extracellular mechanisms in free-living microorganisms. Biotechnol Adv 34:859–873. https://doi.org/10.1016/j.biotechadv.2016.05.003

    Article  CAS  PubMed  Google Scholar 

  11. Bilal M, Rasheed T, Sosa-Hernández J, Raza A, Nabeel F, Iqbal H (2018) Biosorption: an interplay between marine algae and potentially toxic elements—a review. Mar Drugs 16:65. https://doi.org/10.3390/md16020065

    Article  CAS  PubMed Central  Google Scholar 

  12. Das S, Dash HR, Chakraborty J (2016) Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants. Appl Microbiol Biotechnol 100:2967–2984. https://doi.org/10.1007/s00253-016-7364-4

    Article  CAS  PubMed  Google Scholar 

  13. Lu TQ, Mao SY, Sun SL, Yang WL, Ge F, Dai YJ (2016) Regulation of hydroxylation and nitro reduction pathways during metabolism of the neonicotinoid insecticide imidacloprid by Pseudomonas putida. J Agric Food Chem 64:4866–4875. https://doi.org/10.1021/acs.jafc.6b01376

    Article  CAS  PubMed  Google Scholar 

  14. Mohammed YMM, Badawy MEI (2017) Biodegradation of imidacloprid in liquid media by an isolated wastewater fungus Aspergillus terreus YESM3. J Environ Sci Heal B 52:752–761. https://doi.org/10.1080/03601234.2017.1356666

    Article  CAS  Google Scholar 

  15. Legradi JB, Di Paolo C, Kraak MH, Van der Geest HG, Schymanski EL, Williams AJ (2018) An ecotoxicological view on neurotoxicity assessment. Environ Sci Eur 30:46. https://doi.org/10.1186/s12302-018-0173-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang Z, Wang Y, Gong F, Zhang J, Hong Q, Li S (2010) Biodegradation of carbendazim by a novel actinobacterium Rhodococcusjialingiae djl-6-2. Chemosphere 81:639–644. https://doi.org/10.1016/j.chemosphere.2010.08.040

    Article  CAS  PubMed  Google Scholar 

  17. Baybakova EV, Elena EN, Maria NB, Irina RG, Margarita DK, Galina AS (2020) Influence of fungicides on toxigenic properties of phytopathogenic fungi. BIO Web Conf 23:03006. https://doi.org/10.1051/bioconf/20202303006

    Article  Google Scholar 

  18. Miller RNG, Alves GSC, Van Sluys MA (2017) Plant immunity: unravelling the complexity of plant responses to biotic stresses. Ann Bot 119:681–687. https://doi.org/10.1093/aob/mcw284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Efe D (2020) Potential plant growth promoting bacteria with heavy metal resistance. Curr Microbiol. https://doi.org/10.1007/s00284-020-02208-8

    Article  PubMed  Google Scholar 

  20. Shahid M, Khan MS (2017) Assessment of glyphosate and quizalofop mediated toxicity to greengram [Vignaradiata(L.) Wilczek], stress abatement and growth promotion by herbicide tolerant Bradyrhizobium and Pseudomonas species. Int J Curr Microbiol Appl Sci 6:3001–3016. https://doi.org/10.20546/ijcmas.2017.612.351

    Article  CAS  Google Scholar 

  21. Lloyd JR, Lovley DR, Macaskie LE (2003) Biotechnological application of metal reducing microorganisms. Adv Appl Microbiol. https://doi.org/10.1016/S0065-2164(03)53003-9

    Article  PubMed  Google Scholar 

  22. Williams GP, Gnanadesigan M, Ravikumar S (2012) Biosorption and biokinetic studies of halobacterial strains against Ni2+, Al3+ and Hg2+metal ions. Bioresour Technol 107:526–529. https://doi.org/10.1016/j.biortech.2011.12.054

    Article  CAS  PubMed  Google Scholar 

  23. Roy T, Das N (2017) Isolation, characterization and identification of two methomyl degrading bacteria from a pesticide-treated crop field in West Bengal, India. Microbiology 86:753–764. https://doi.org/10.1134/S0026261717060145

    Article  CAS  Google Scholar 

  24. Yadav S, Verma SK, Singh Chaudhary H (2015) Isolation and characterization of organophosphate pesticides degrading bacteria from contaminated agricultural soil. Online J Biol Sci 15:113–125

    Article  CAS  Google Scholar 

  25. Dahiya P, Purkayastha S (2012) Phytochemical screening and antimicrobial activity of some medicinal plants against multi-drug resistant bacteria from clinical isolates. Indian J Pharm Sci 74:443–450. https://doi.org/10.4103/0250-474X.108420

    Article  PubMed  PubMed Central  Google Scholar 

  26. Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48:5–16. https://doi.org/10.1093/jac/48.suppl_1.5

    Article  CAS  PubMed  Google Scholar 

  27. de Silva A, de Carvalho AL, de Souza MAR, Dias SA, da Silva PMT, Filho RG et al (2012) Heavy metal tolerance (Cr, Ag and Hg) in bacteria isolated from sewage. Braz J Microbiol 43:1620–1631. https://doi.org/10.1590/S1517-838220120047000400

    Article  Google Scholar 

  28. Liu SL, Yao K, Jia DY, Zhao N, Lai W, Yuan HY (2012) A pretreatment method for HPLC analysis of cypermethrin in microbial degradation systems. J Chromatogr Sci 50:469–476. https://doi.org/10.1093/chromsci/bms030

    Article  CAS  PubMed  Google Scholar 

  29. Sykora P, Čeplíková V, Foltýnová Z, Horniak L, Ebringer L (1991) Elimination of plasmids pKM 101 and F’lac from Salmonella typhimurium and Escherichia coli by bis ammonium salt. Folia Microbiol 36:240–245. https://doi.org/10.1007/BF02814355

    Article  CAS  Google Scholar 

  30. Sivashankari TR, Sudha K, Barathi S, Karthikeyan V (2016) Efficacy of plasmid curing agent on Streptomyces longsporesflavns. Afr J Microbiol Res 10:616–625. https://doi.org/10.5897/AJMR2015.7675

    Article  CAS  Google Scholar 

  31. Roy T, Bandopadhyay A, Sonawane P, Majumdar S, Mahapatra N, Alam S, Das N (2018) Bio-effective disease control and plant growth promotion in lentil by two pesticide degrading strains of Bacillus spp. Biol Control 127:55–63. https://doi.org/10.1016/j.biocontrol.2018.08.018

    Article  Google Scholar 

  32. Bandopadhyay A, Roy T, Das N (2018) Isolation of some soil bacteria showing potentiality for disease control, growth enhancement and pesticide degradation in Vigna unguiculata L. Plant Arch 18:79–88

    Google Scholar 

  33. Pietrzak D, Kania J, Kmiecik E, Malina G, Wator K (2020) Fate of selected neonicotinoid insecticides in soil-water systems: current state of the art and knowledge gaps. Chemosphere 255:126981. https://doi.org/10.1016/j.chemosphere.2020.126981

    Article  CAS  PubMed  Google Scholar 

  34. Banerjee I, Tripathi SK, Sinha Roy A, Sengupta P (2014) Pesticide used pattern among farmers in rural district of West Bengal, India. J Nat Sci Biol Med 5:313–316. https://doi.org/10.4103/0976-9668.136173

    Article  PubMed  PubMed Central  Google Scholar 

  35. Castillo JM, Casas J, Romero E (2011) Isolation of an endosulfan degrading bacterium from a coffee farm soil: persistence and inhibitory effect on its biological functions. Sci Total Environ 412:20–27. https://doi.org/10.1016/j.scitotenv.2011.09.062

    Article  CAS  PubMed  Google Scholar 

  36. Ahemad M, Khan SM (2012) Effects of pesticides on plant growth promoting traits of Mesorhizobium strain MRC4. J Saudi Soc Agric Sci 11:63–71. https://doi.org/10.1016/j.jssas.2011.10.001

    Article  CAS  Google Scholar 

  37. Panda J, Kanjilal T, Das S (2018) Optimized biodegradation of carcinogenic fungicide carbendazim by Bacillus licheniformis JTC-3 from agro-effluent. Biotechnol Res Innov 2:45–57. https://doi.org/10.1016/j.biori.2017.10.004

    Article  Google Scholar 

  38. Rani R, Kumar V (2017) Endosulfan degradation by selected strains of plant growth promoting rhizobacteria. Bull Environ Contam Toxicol 99:138–145. https://doi.org/10.1007/s00128-017-2102-x

    Article  CAS  PubMed  Google Scholar 

  39. Tang W (2017) Research progress of microbial degradation of organophosphorus pesticides. Prog Appl Microbiol 1:29–35

    Google Scholar 

  40. Ekram MA, Sarker I, Rahi MS, Rahman MA, Saha AK, Abu Reza M (2020) Efficacy of soil borne Enterobacter sp. for carbofuran degradation: HPLC quantitation of degradation rate. J Basic Microbiol 60:1–10. https://doi.org/10.1002/jobm.201900570

    Article  CAS  Google Scholar 

  41. Bhatt P, Huang Y, Zhan H, Chen S (2019) Insight into microbial applications for the biodegradation of pyrethroid insecticides. Front Microbiol 10:1778. https://doi.org/10.3389/fmicb.2019.01778

    Article  PubMed  PubMed Central  Google Scholar 

  42. Krishnasamy L, Sundaram CS, Sivakumar J (2019) Biodegradation of pesticides from the isolated microbial flora of crop field contaminated soil. Res J Life Bioinform Pharm Chem Sci 5:150–163. https://doi.org/10.26479/2019.0502.12

    Article  CAS  Google Scholar 

  43. Roane TM, Pepper IL, Miller RM (2005) Microbial remediation of metals. In: Crawford RL, Crawford DL (eds) Bioremediation: principles and applications. Cambridge University Press, Cambridge, p 312

    Google Scholar 

  44. Rahman Z, Singh VP (2018) Assessment of heavy metal contamination and Hg-resistant bacteria in surface water from different regions of Delhi, India. Saudi J Biol Sci 25:1687–1695. https://doi.org/10.1016/j.sjbs.2016.09.018

    Article  CAS  PubMed  Google Scholar 

  45. Patel PR, Shaikh SS, Sayyed RZ (2016) Dynamism of PGPR in bioremediation and plant growth promotion in heavy metal contaminated soil. Indian J Exp Biol 54:286–290

    CAS  PubMed  Google Scholar 

  46. Bandopadhyay A, Bhattacharya SK, Das N (2019) Biocontrol and growth promoting potential of eight PGPFs on jute and sunnhemp. J Soils Crops 29:243–250

    Google Scholar 

  47. Pietro-Souza W, de Campos PF, Mello IS, Stachack FFF, Terezo AJ, da Cunha CN et al (2020) Mercury resistance and bioremediation mediated by endophytic fungi. Chemosphere 240:124874. https://doi.org/10.1016/j.chemosphere.2019.124874

    Article  CAS  PubMed  Google Scholar 

  48. Malik A, Aleem A (2011) Incidence of metal and antibiotic resistance in Pseudomonas spp. from the river water, agricultural soil irrigated with wastewater and groundwater. Environ Monit Assess 178:293–308. https://doi.org/10.1007/s10661-010-1690-2

    Article  CAS  PubMed  Google Scholar 

  49. Pattnaik S, Dash D, Mohapatra S, Pattnaik M, Marandi AK, Das S, Samantaray DP (2020) Improvement of rice plant productivity by native Cr(VI) reducing and plant growth promoting soil bacteria Enterobacter cloacae. Chemosphere 240:124895. https://doi.org/10.1016/j.chemosphere.2019.124895

    Article  CAS  PubMed  Google Scholar 

  50. Capkin E, Terzi E, Altinok I (2015) Occurrence of antibiotic resistance genes in culturable bacteria isolated from Turkish trout farms and their local aquatic environment. Dis Aquat Organ 114:127–137. https://doi.org/10.3354/dao02852

    Article  CAS  PubMed  Google Scholar 

  51. Alaali Z, Thani ASB (2020) Patterns of antimicrobial resistance observed in the Middle East: Environmental and health care retrospectives. Sci Total Environ 740:140089. https://doi.org/10.1016/j.scitotenv.2020.140089

    Article  CAS  PubMed  Google Scholar 

  52. Anjum R, Grohmann E, Malik A (2011) Molecular characterization of conjugative plasmids in pesticide tolerant and multi-resistant bacterial isolates from contaminated alluvial soil. Chemosphere 84:175–181. https://doi.org/10.1016/j.chemosphere.2011.02.002

    Article  CAS  PubMed  Google Scholar 

  53. Trevors JT (1986) Plasmid curing in bacteria. FEMS Microbiol Rev 32:149–157. https://doi.org/10.1111/j.1574-6968.1986.tb01189.x

    Article  CAS  Google Scholar 

  54. Dastidar SG, Poddar R, Kumar R, Chakrabarty AN (1977) Incidence and elimination of R plasmids in Vibrio cholerae. Antimicrob Agents Chemother 11:1079–1080. https://doi.org/10.1128/AAC.11.6.1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Molina-Aja A, García-Gasca A, Abreu-Grobois A, Bolán-Mejía C, Roque A, Gomez-Gil B (2002) Plasmid profiling and antibiotic resistance of Vibrio strains isolated from cultured Penaeid shrimp. FEMS Microbiol Lett 213:7–12. https://doi.org/10.1111/j.1574-6968.2002.tb11278.x

    Article  CAS  PubMed  Google Scholar 

  56. Nies DH, Brown NL (1998) Two component system in regulation of heavy metal resistance. In: Silver S, Walden W (eds) Metal ions in gene regulation. Springer, New York, pp 77–103. https://doi.org/10.1007/978-1-4615-5993-1_4

    Chapter  Google Scholar 

  57. Agarwal M, Rathore RS, Jagoe C, Chauhan A (2019) Multiple lines of evidences reveal mechanisms underpinning mercury resistance and volatilization by Stenotrophomonas sp. MA5 isolated from the Savannah river site (SRS), USA. Cells 8:309. https://doi.org/10.3390/cells8040309

    Article  CAS  PubMed Central  Google Scholar 

  58. Malik A, Çelik EK, Bohn C, Böckelmann U, KnobelK GE (2008) Detection of conjugative plasmids and antibiotic resistance genes in anthropogenic soils from Germany and India. FEMS Microbiol Lett 279:207–216. https://doi.org/10.1111/j.15746968.2007.01030.x

    Article  CAS  PubMed  Google Scholar 

  59. Maheswari UA, Nuni A, Shreevidya R (2010) Evaluation of antibacterial activity of Boerhaavia diffusa L. leaves. Int J Green Pharm 4:75–78. https://doi.org/10.22377/ijgp.v4i2.123

    Article  Google Scholar 

  60. Hawkins NJ, Bass C, Dixon A, Neve P (2019) The evolutionary origins of pesticide resistance. Biol Rev 94:135–155. https://doi.org/10.1111/brv.12440

    Article  Google Scholar 

Download references

Acknowledgements

The work was financially supported by Department of Science and Technology (West Bengal), India [Memo no. 757 (Sanc)/ST/P/S&T/1G-15/2014]. We acknowledge the help of Mr. S. Biswas, Central Instrumental Facility, Bose Institute, Kankurgachhi, Kolkata, India for HPLC analysis.

Author information

Authors and Affiliations

Authors

Contributions

ND and SM developed the concept. ND and SM designed the experiment. TR performed the experiments. ND, AB, and SM analyzed the data. ND, TR, and CP interpreted the results. TR, AB, CP, and ND wrote the manuscript. ND overall supervised the work.

Corresponding author

Correspondence to Nirmalendu Das.

Ethics declarations

Conflict of interest

All authors declare that there are no conflicts of interest in the present investigation.

Ethics Approval

Not applicable.

Consent to Participate

Not Applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 782 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, T., Bandopadhyay, A., Paul, C. et al. Role of Plasmid in Pesticide Degradation and Metal Tolerance in Two Plant Growth-Promoting Rhizobacteria Bacillus cereus (NCIM 5557) and Bacillus safensis (NCIM 5558). Curr Microbiol 79, 106 (2022). https://doi.org/10.1007/s00284-022-02793-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02793-w

Navigation