Skip to main content
Log in

Evaluation of Antimicrobial and Antioxidant Potential of Essential Oil from Croton piauhiensis Müll. Arg.

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A large number of infections are caused by Gram-positive and Gram-negative multi-resistant bacteria worldwide, adding up to a figure of around 700,000 deaths per year. The indiscriminate uses of antibiotics, as well as their misuse, resulted in the selection of bacteria resistant to known antibiotics, for which it has little or no treatment. In this way, the strategies to combat the resistance of microorganisms are extremely important and, essential oils of Croton species have been extensively studied for this purpose. The aim of this study was to carry the evaluation of antibacterial, antibiofilm, antioxidant activities, and spectroscopic investigation of essential oil from Croton piauhiensis (EOCp). The EOCp exhibited antimicrobial activity against Gram-positive and Gram-negative bacteria with required MICs ranging from 0.15 to 5% (v/v). In addition, the MBC of the EOCp for Staphylococcus aureus ATCC 25923 and ATCC 700698, were 0.15 and 1.25%, respectively. Moreover, the EOCp significantly reduced significantly the biofilm production and the number of viable cells from the biofilm of all bacterial strains tested. The antioxidant potential of the EOCp showed EC50 values ranging from 171.21 to 4623.83 μg/mL. The EOCp caused hemolysis (>45%) at the higher concentrations tested (1.25 to 5%), and minor hemolysis (17.6%) at a concentration of 0.07%. In addition, docking studies indicated d-limonene as a phytochemical with potential for antimicrobial activity. This study indicated that the EOCp may be a potential agent against infections caused by bacterial biofilms, and act as a protective agent against ROS and oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wensley S (2016) BVA welcomes call for global action on AMR. Vet Rec 178(22):545–545. https://doi.org/10.1136/vr.i2971

    Article  Google Scholar 

  2. Kostakioti M, Hadjifrangiskou M, Hultgren SJ (2013) Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med 3(4):a010306. https://doi.org/10.1101/cshperspect.a010306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Soto SM (2014) Importance of biofilms in urinary tract infections: new therapeutic approaches. Adv Behav Biol 2014:543974. https://doi.org/10.1155/2014/543974

    Article  CAS  Google Scholar 

  4. Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35(4):322–332. https://doi.org/10.1016/j.ijantimicag.2009.12.011

    Article  CAS  PubMed  Google Scholar 

  5. Brusotti G, Cesari I, Dentamaro A, Caccialanza G, Massolini G (2014) Isolation and characterization of bioactive compounds from plant resources: the role of analysis in the ethnopharmacological approach. J Pharm Biomed Anal 87:218–228. https://doi.org/10.1016/j.jpba.2013.03.007

    Article  CAS  PubMed  Google Scholar 

  6. Atanasov AG, Waltenberger B, Pferschy-Wenzig E-M, Linder T, Wawrosch C, Uhrin P, Temml V, Wang L, Schwaiger S, Heiss EH, Rollinger JM, Schuster D, Breuss JM, Bochkov V, Mihovilovic MD, Kopp B, Bauer R, Dirsch VM, Stuppner H (2015) Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv 33(8):1582–1614. https://doi.org/10.1016/j.biotechadv.2015.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vasconcelos MA, Arruda FVS, de Alencar DB, Saker-Sampaio S, Albuquerque MRJR, dos Santos HS, Bandeira PN, Pessoa ODL, Cavada BS, Henriques M, Pereira MO, Teixeira EH (2014) Antibacterial and antioxidant activities of derriobtusone a isolated from Lonchocarpus obtusus. BioMed Res Int 2014:248656. https://doi.org/10.1155/2014/248656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Benbelaïd F, Khadir A, Abdoune MA, Bendahou M, Muselli A, Costa J (2014) Antimicrobial activity of some essential oils against oral multidrug-resistant Enterococcus faecalis in both planktonic and biofilm state. Asian Pac J Trop Biomed 4(6):463–472. https://doi.org/10.12980/APJTB.4.2014C1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alfadda AA, Sallam RM (2012) Reactive oxygen species in health and disease. J Biomed Biotechnol 2012:936486. https://doi.org/10.1155/2012/936486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141(2):384. https://doi.org/10.1104/pp.106.078295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Berry PE, Hipp AL, Wurdack KJ, Van Ee B, Riina R (2005) Molecular phylogenetics of the giant genus Croton and tribe Crotoneae (Euphorbiaceae sensu stricto) using ITS and TRNL-TRNF DNA sequence data. Am J Bot 92(9):1520–1534. https://doi.org/10.3732/ajb.92.9.1520

    Article  CAS  PubMed  Google Scholar 

  12. Salatino A, Salatino MLF, Negri G (2007) Traditional uses, chemistry and pharmacology of Croton species (Euphorbiaceae). J Braz Chem Soc 18:11–33

    Article  CAS  Google Scholar 

  13. Torres DSC (2009) Diversity of Croton L. (Euphorbiaceae) in the Caatinga Biome Thesis, State University of Feira de Santana, Feira de Santana (BA)

  14. Silva-Almeida JRG, Souza AVV, Oliveira AP, Santos US, de Souza M, dos Bispo LP, Turatti ICC, Lopes NP (2015) Chemical composition of essential oils from the stem barks of Croton conduplicatus (Euphorbiaceae) native to the Caatinga biome. Afr J Pharm Pharmacol 9(4):98–101. https://doi.org/10.5897/AJPP2014.4072

    Article  Google Scholar 

  15. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc, Wallingford

    Google Scholar 

  16. Wong MW (1996) Vibrational frequency prediction using density functional theory. Chem Phys Lett 256(4–5):391–399. https://doi.org/10.1016/0009-2614(96)00483-6

    Article  CAS  Google Scholar 

  17. Zhurko GA, Zhurko DA (2019) Chemcraft—graphical software for visualization of quantum chemistry computations, Version 18, Build 562

  18. Skogman ME, Vuorela PM, Fallarero A (2012) Combining biofilm matrix measurements with biomass and viability assays in susceptibility assessments of antimicrobials against Staphylococcus aureus biofilms. J Antibiot 65(9):453–459. https://doi.org/10.1038/ja.2012.49

    Article  CAS  Google Scholar 

  19. Andrade AL, de Vasconcelos MA, Arruda FVDS, NetoCarvalho LGDNJMDS, Gondim ACS, Lopes LGDF, Sousa EHS, Teixeira H (2020) Antimicrobial activity and antibiotic synergy of a biphosphinic ruthenium complex against clinically relevant bacteria. Biofouling 36(4):442–454. https://doi.org/10.1080/08927014.2020.1771317

    Article  CAS  PubMed  Google Scholar 

  20. Batista A, Dodou H, Rodrigues M, Pereira P, Sales G, Medeiros S, Nogueira N (2018) Modulatory effect of Lippia alba essential oil on the activity of clinically used antimicrobial agents on Salmonella typhi and Shigella dysenteriae biofilm. Sci Pharm 86(4):52. https://doi.org/10.3390/scipharm86040052

    Article  CAS  Google Scholar 

  21. Stepanović S, Vuković D, Dakić I, Savić B, Švabić-Vlahović M (2000) A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods 40(2):175–179. https://doi.org/10.1016/S0167-7012(00)00122-6

    Article  PubMed  Google Scholar 

  22. Vasconcelos MA, Arruda FVS, Santos HS, Rodrigues AS, Bandeira PN, Albuquerque MRJR, Cavada BS, Teixeira EH, Henriques M, Pereira MO (2014) Effect of a casbane diterpene isolated from Croton nepetaefolius on the prevention and control of biofilms formed by bacteria and Candida species. Ind Crop Prod 61:499–509. https://doi.org/10.1016/j.indcrop.2014.07.027

    Article  CAS  Google Scholar 

  23. Duan X-J, Zhang W-W, Li XM, Wang BG (2006) Evaluation of antioxidant property of extract and fractions obtained from a red alga Polysiphonia urceolata. Food Chem 95(1):37–43. https://doi.org/10.1016/j.foodchem.2004.12.015

    Article  CAS  Google Scholar 

  24. Wang T, Jónsdóttir R, Ólafsdóttir G (2009) Total phenolic compounds, radical scavenging and metal chelation of extracts from icelandic seaweeds. Food Chem 116(1):240–248. https://doi.org/10.1016/j.foodchem.2009.02.041

    Article  CAS  Google Scholar 

  25. Ganesan P, Kumar CS, Bhaskar N (2008) Antioxidant properties of methanol extract and its solvent fractions obtained from selected Indian red seaweeds. Bioresour Technol 99(8):2717–2723. https://doi.org/10.1016/j.biortech.2007.07.005

    Article  CAS  PubMed  Google Scholar 

  26. Chew YL, Lim YY, Omar M, Khoo KS (2008) Antioxidant activity of three edible seaweeds from two areas in South East Asia. LWT - Food Sci Technol 41(6):1067–1072. https://doi.org/10.1016/j.lwt.2007.06.013

    Article  CAS  Google Scholar 

  27. Ahmad A, Khan A, Manzoor N, Khan LA (2010) Evolution of ergosterol biosynthesis inhibitors as fungicidal against Candida. Microb Pathog 48(1):35–41. https://doi.org/10.1016/j.micpath.2009.10.001

    Article  CAS  PubMed  Google Scholar 

  28. Hudson IRB (1994) The efficacy of intranasal mupirocin in the prevention of staphylococcal infections: a review of recent experience. J Hosp Infect 27(2):81–98. https://doi.org/10.1016/0195-6701(94)90001-9

    Article  CAS  PubMed  Google Scholar 

  29. Schimmel P, Tao J, Hill J (1998) Aminoacyl tRNA synthetases as targets for new anti-infectives. FASEB J 12(15):1599–1609

    Article  CAS  PubMed  Google Scholar 

  30. Berge JM, Broom NJ, Houge-Frydrych CS, Jarvest RL, Mensah L, McNair DJ, O’Hanlon PJ, Pope AJ, Rittenhouse S (2000) Synthesis and activity of analogues of SB-219383: novel potent inhibitors of bacterial tyrosyl tRNA synthetase. J Antibiot (Tokyo) 53(11):1282–1292. https://doi.org/10.7164/antibiotics.53.1282

    Article  CAS  Google Scholar 

  31. Trott O, Olson AJ (2010) Software news and update autodock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Biovia DS (2017) Discovery studio visualizer. Dassault Systemes BIOVIA Corp, San Diego

    Google Scholar 

  33. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  34. Yusuf D, Davis AM, Kleywegt GJ, Schmitt S (2008) An alternative method for the evaluation of docking performance: RSR vs RMSD. J Chem Inf Model 48(7):1411–1422. https://doi.org/10.1021/ci800084x

    Article  CAS  PubMed  Google Scholar 

  35. Alviano WS, Mendonça-Filho RR, Alviano DS, Bizzo HR, Souto-Padrón T, Rodrigues ML, Bolognese AM, Alviano CS, Souza MMG (2005) Antimicrobial activity of Croton cajucara Benth linalool-rich essential oil on artificial biofilms and planktonic microorganisms. Oral Microbiol Immunol 20(2):101–105. https://doi.org/10.1111/j.1399-302X.2004.00201.x

    Article  CAS  PubMed  Google Scholar 

  36. Radulovic N (2006) Essential oil composition of four Croton species from Madagascar and their chemotaxonomy. Biochem Syst Ecol 34(8):648–653. https://doi.org/10.1016/j.bse.2006.02.005

    Article  CAS  Google Scholar 

  37. Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94(3):223–253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022

    Article  CAS  PubMed  Google Scholar 

  38. Teixeira AMR, Lima IKC, Xavier MR, Pereira RLS, Gonçalves BG, de Sena DM, da Costa JM, Freire PTC, Saraiva GD, Bento RRF, de Faria JLB, Toledo TA (2018) Vibrational spectroscopy study of essential oils from Plectranthus amboinicus Lour. Spreng and Vanillosmopsis arborea Baker. Vib Spectrosc 98:22–29. https://doi.org/10.1016/j.vibspec.2018.05.008

    Article  CAS  Google Scholar 

  39. Saraiva AGQ, Saraiva GD, Albuquerque RL, Nogueira CES, Teixeira AMR, Lima LB, Cruz BG, de Sousa FF (2020) Chemical analysis and vibrational spectroscopy study of essential oils from Lippia sidoides and of its major constituent. Vib Spectrosc 110:103111. https://doi.org/10.1016/j.vibspec.2020.103111

    Article  CAS  Google Scholar 

  40. Costa JGMd, Rodrigues FFG, Angélico EC, Pereira CKB, Souza EOd, Caldas GFR, Silva MR, Santos NKA, Mota ML, Santos PFd (2008) Composição química e avaliação da atividade antibacteriana e toxicidade do óleo essencial de Croton zehntneri (variedade estragol). Rev Bras Farmacogn 18:583–586. https://doi.org/10.1590/S0102-695X2008000400015

    Article  Google Scholar 

  41. Vale JPCd, Ribeiro LHdF, Vasconcelos MAd, Sá-Firmino NC, Pereira AL, Nascimento MFd, Rodrigues THS, Silva PTd, Sousa KCd, Silva RBd, Nascimento Neto LGd, Saker-Sampaio S, Bandeira PN, Santos HS, Souza EBd, Teixeira EH (2019) Chemical composition, antioxidant, antimicrobial and antibiofilm activities of Vitex gardneriana schauer leaves’s essential oil. Microb Pathog 135:103608. https://doi.org/10.1016/j.micpath.2019.103608

    Article  CAS  PubMed  Google Scholar 

  42. Zhang Z, Vriesekoop F, Yuan Q, Liang H (2014) Effects of nisin on the antimicrobial activity of d-limonene and its nanoemulsion. Food Chem 150:307–312. https://doi.org/10.1016/j.foodchem.2013.10.160

    Article  CAS  PubMed  Google Scholar 

  43. Gustafson JE, Liew YC, Chew S, Markham J, Bell HC, Wyllie SG, Warmington JR (1998) Effects of tea tree oil on Escherichia coli. Lett Appl Microbiol 26(3):194–198. https://doi.org/10.1046/j.1472-765x.1998.00317.x

    Article  CAS  PubMed  Google Scholar 

  44. Kavanaugh NL, Ribbeck K (2012) Selected antimicrobial essential oils eradicate Pseudomonas spp. and Staphylococcus aureus biofilms. Appl Environ Microbiol 78(11):4057–4061. https://doi.org/10.1128/aem.07499-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mousavi Nadoshan S, Owlia P, Moein Najafabadi L, Rasooli I, Saderi H, Salari MH (2010) Effects of sub-inhibitory concentrations of essential oils of Mentha spicata and Cumminum cyminum on virulence factors of Pseudomonas aeruginosa. J Med Plants 9(33):124–130

    Google Scholar 

  46. Morais SMd, Catunda Júnior FEA, Silva ARAd, Martins Neto JS, Rondina D, Cardoso JHL (2006) Atividade antioxidante de óleos essenciais de espécies de Croton do nordeste do Brasil. Quim Nova 29:907–910. https://doi.org/10.1590/S0100-40422006000500004

    Article  Google Scholar 

  47. Amorati R, Foti MC, Valgimigli L (2013) Antioxidant activity of essential oils. J Agric Food Chem 61(46):10835–10847. https://doi.org/10.1021/jf403496k

    Article  CAS  PubMed  Google Scholar 

  48. Graßmann J (2005) Terpenoids as plant antioxidants. In: Litwack G (ed) Vitamins and hormones, vol 72. Academic Press, Cambridge, pp 505–535

    Google Scholar 

  49. Barros FJ, Costa RJO, Cesário FRAS, Rodrigues LB, da Costa JGM, Coutinho HDM, Galvao HBF, de Menezes IRA (2016) Activity of essential oils of Piper aduncumanf and Cinnamomum zeylanicum by evaluating osmotic and morphologic fragility of erythrocytes. Eur J Integr Med 8(4):505–512. https://doi.org/10.1016/j.eujim.2016.02.011

    Article  Google Scholar 

  50. Ghosh T, Biswas MK, Chatterjee S, Roy P (2018) In-vitro study on the hemolytic activity of different extracts of Indian medicinal plant croton bonplandianum with phytochemical estimation: a new era in drug development. J Drug Deliv Ther. https://doi.org/10.22270/jddt.v8i4.1747

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to EMBRAPA AGROINDÚSTRIA TROPICAL for obtaining the spectral data. Edson Holanda Teixeira is Senior researcher of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). The authors thank Editage (www.editage.com) for English language editing. The authors also thank Centro Nacional de Processamento de Alto Desempenho (CENAPAD) of the Federal University of Ceará (UFC) for providing computational resources.

Funding

This research was funded by Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico – FUNCAP (Grant: BP4-0172-00075.01.00/20 for Hélcio Silva dos Santos).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: HSS; software: MMM; data curation, JPCV; visualization: THSR; validation: FVSA; formal analysis: ALA; Methodology: MAV; project administration: SS; funding acquisition: AMRT; writing—original draft preparation: EHT; writing—review and editing: ESM; resources:AHS; supervision: NCSF; Investigation: ALP. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Hélcio Silva dos Santos.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3199 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

do Vale, J.P.C., Vasconcelos, M.A., Arruda, F.V.S. et al. Evaluation of Antimicrobial and Antioxidant Potential of Essential Oil from Croton piauhiensis Müll. Arg.. Curr Microbiol 78, 1926–1938 (2021). https://doi.org/10.1007/s00284-021-02449-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02449-1

Navigation