Skip to main content
Log in

Qualitative and Quantitative Analyses of the Colonization Characteristics of Bacillus subtilis Strain NCD-2 on Cotton Root

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Bacillus subtilis strain NCD-2 is an excellent biocontrol agent against plant soil-borne diseases. With the purpose of understanding the colonization characteristics of strain NCD-2, firstly, a constitutive expression promoter was cloned from strain NCD-2 and was used to construct GFP-labeled strain NCD-2. The GFP-labeled strain NCD-2 showed strong green fluorescence under planktonic cells and biofilm formation. The colonization characteristics of strain NCD-2 on different parts of cotton root were qualitatively observed by confocal laser scanning microscopy (CLSM). Results showed that strain NCD-2 mainly colonized on the zone of differentiation and elongation. Rhizosphere populations of B. subtilis strain NCD-2 on different cotton root were quantitatively evaluated by traditional plating count and quantitative PCR (qPCR) analysis in both autoclaved soil and non-autoclaved soil, respectively. Results showed that both traditional plating count and qPCR analysis showed similar trend for colonization characteristics of strain NCD-2. The greatest strain NCD-2 populations were in the root tip, at 9.19 × 107 CFU g−1 root and 6.75 × 107 CFU g−1 root as estimated by qPCR in non-autoclaved and autoclaved soil, respectively. This study provides a clearer understanding of the interactions between biocontrol agent and plant, as well as with the indigenous microorganisms in the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tjamos EC (2000) Strategies in developing methods and applying techniques for the biological control of Verticillium dahliae. Advences in Verticillium Research and Disease Management. APS Press, St. Paul, pp 227–231

    Google Scholar 

  2. Mizumoto S, Hirai M, Shoda M (2007) Enhanced iturin A production by Bacillus subtilis and its effect on suppression of the plant pathogen Rhizoctonia solani. Appl Microbiol Biotechnol 75(6):1267–1274. https://doi.org/10.1007/s00253-007-0973-1

    Article  CAS  PubMed  Google Scholar 

  3. Yuan J, Zhang N, Huang Q, Raza W, Li R, Vivanco JM, Shen Q (2015) Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6. Sci Rep 5(1):13438. https://doi.org/10.1038/srep13438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134(1):307–319. https://doi.org/10.1104/pp.103.028712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16(3):115–125. https://doi.org/10.1016/j.tim.2007.12.009

    Article  CAS  PubMed  Google Scholar 

  6. Guo Q, Dong W, Li S, Lu X, Wang P, Zhang X, Wang Y, Ma P (2014) Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease. Microbiol Res 169(7–8):533–540. https://doi.org/10.1016/j.micres.2013.12.001

    Article  CAS  PubMed  Google Scholar 

  7. Sajitha KL, Dev SA (2016) Quantification of antifungal lipopeptide gene expression levels in Bacillus subtilis B1 during antagonism against sapstain fungus on rubberwood. Biol Control 96:78–85. https://doi.org/10.1016/j.biocontrol.2016.02.007

    Article  CAS  Google Scholar 

  8. Liu Y, Zhang N, Qiu M, Feng H, Vivanco JM, Shen Q, Zhang R (2014) Enhanced rhizosphere colonization of beneficial Bacillus amyloliquefaciens SQR9 by pathogen infection. FEMS Microbiol Lett 353(1):49–56. https://doi.org/10.1111/1574-6968.12406

    Article  CAS  PubMed  Google Scholar 

  9. Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moenne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dye F, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356. https://doi.org/10.3389/fpls.2013.00356

    Article  PubMed  PubMed Central  Google Scholar 

  10. Choudhary DK, Johri BN (2009) Interactions of Bacillus spp. and plants–with special reference to induced systemic resistance (ISR). Microbiol Res 164(5):493–513. https://doi.org/10.1016/j.micres.2008.08.007

    Article  CAS  PubMed  Google Scholar 

  11. Zeriouh H, de Vicente A, Pérez-García A, Romero D (2014) Surfactin triggers biofilm formation of Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity. Environ Microbiol 16(7):2196–2211. https://doi.org/10.1111/1462-2920.12271

    Article  CAS  PubMed  Google Scholar 

  12. Liu Y, Chen L, Zhang N, Li Z, Zhang G, Xu Y, Shen Q, Zhang R (2016) Plant-microbe communication enhances auxin biosynthesis by a root-associated bacterium, Bacillus amyloliquefaciens SQR9. Mol Plant-Microbe Interact 29(4):324–330. https://doi.org/10.1094/mpmi-10-15-0239-r

    Article  CAS  PubMed  Google Scholar 

  13. Beauregard PB, Chai Y, Vlamakis H, Losick R, Kolter R (2013) Bacillus subtilis biofilm induction by plant polysaccharides. Proc Natl Acad Sci 110(17):E1621–1630. https://doi.org/10.1073/pnas.1218984110

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chaparro JM, Badri DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8(4):790–803. https://doi.org/10.1038/ismej.2013.196

    Article  CAS  PubMed  Google Scholar 

  15. Sasse J, Martinoia E, Northen T (2018) Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci 23(1):25–41. https://doi.org/10.1016/j.tplants.2017.09.003

    Article  CAS  PubMed  Google Scholar 

  16. DeAngelis KM, Ji P, Firestone MK, Lindow SE (2005) Two novel bacterial biosensors for detection of nitrate availability in the rhizosphere. Appl Environ Microbiol 71(12):8537–8547. https://doi.org/10.1128/AEM.71.12.8537-8547.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Massalha H, Korenblum E, Malitsky S, Shapiro OH, Aharoni A (2017) Live imaging of root–bacteria interactions in a microfluidics setup. Proc Natl Acad Sci 114(17):4549–4554. https://doi.org/10.1073/pnas.1618584114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kawasaki A, Donn S, Ryan PR, Mathesius U, Devilla R, Jones A, Watt M (2016) Microbiome and exudates of the root and rhizosphere of Brachypodium distachyon, a model for wheat. PLoS ONE 11(10):e0164533. https://doi.org/10.1371/journal.pone.0164533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fan B, Chen XH, Budiharjo A, Bleiss W, Vater J, Borriss R (2011) Efficient colonization of plant roots by the plant growth promoting bacterium Bacillus amyloliquefaciens FZB42, engineered to express green fluorescent protein. J Biotechnol 151(4):303–311. https://doi.org/10.1016/j.jbiotec.2010.12.022

    Article  CAS  PubMed  Google Scholar 

  20. Zhang N, Yang D, Wang D, Miao Y, Shao J, Zhou X, Xu Z, Li Q, Feng H, Li S, Shen Q, Zhang R (2015) Whole transcriptomic analysis of the plant-beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 during enhanced biofilm formation regulated by maize root exudates. BMC Genom 16(1):685. https://doi.org/10.1186/s12864-015-1825-5

    Article  CAS  Google Scholar 

  21. Chowdhury SP, Uhl J, Grosch R, Alqueres S, Pittroff S, Dietel K, Schmitt-Kopplin P, Borriss R, Hartmann A (2015) Cyclic lipopeptides of Bacillus amyloliquefaciens subsp plantarum colonizing the lettuce rhizosphere enhance plant defense responses toward the bottom rot pathogen Rhizoctonia solani. Mol Plant Microbe Interact 28(9):984–995. https://doi.org/10.1094/MPMI-03-15-0066-R

    Article  CAS  PubMed  Google Scholar 

  22. Li S, Lu X, Ma P, Gao S, Liu X, Liu G (2005) Evaluation of biocontrol potential of a bacterial strain NCD-2 against cotton verticillium wilt in field trials. Acta Phytopathol Sin 35(5):45–55

    Google Scholar 

  23. Guo Q, Li S, Lu X, Li B, Ma P (2010) PhoR/PhoP two component regulatory system affects biocontrol capability of Bacillus subtilis NCD-2. Genet Mol Biol 33(2):333–340. https://doi.org/10.1590/s1415-47572010005000032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xue GP, Johnson JS, Dalrymple BP (1999) High osmolarity improves the electro-transformation efficiency of the gram-positive bacteria Bacillus subtilis and Bacillus licheniformis. J Microbiol Methods 34(3):183–191

    Article  CAS  Google Scholar 

  25. Itaya M, Shaheduzzaman SM, Matsui K, Omori A, Tsuji T (2001) Green marker for colonies of Bacillus subtilis. Biosci Biotechnol Biochem 65(3):579–583

    Article  CAS  PubMed  Google Scholar 

  26. Cao Y, Zhang Z, Ling N, Yuan Y, Zheng X, Shen B, Shen Q (2011) Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots. Biol Fertil Soils 47(5):495–506. https://doi.org/10.1007/s00374-011-0556-2

    Article  CAS  Google Scholar 

  27. Fan B, Borriss R, Bleiss W, Wu X (2012) Gram-positive rhizobacterium Bacillus amyloliquefaciens FZB42 colonizes three types of plants in different patterns. J Microbiol 50(1):38–44. https://doi.org/10.1007/s12275-012-1439-4

    Article  PubMed  Google Scholar 

  28. Dunn AK, Handelsman J (1999) A vector for promoter trapping in Bacillus cereus. Gene 226(2):297–305

    Article  CAS  PubMed  Google Scholar 

  29. Allard-Massicotte R, Tessier L, Lecuyer F, Lakshmanan V, Lucier JF, Garneau D, Caudwell L, Vlamakis H, Bais HP, Beauregard PB (2016) Bacillus subtilis early colonization of Arabidopsis thaliana roots involves multiple chemotaxis receptors. MBio 7(6):e01664–e1716. https://doi.org/10.1128/mBio.01664-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang C-H, Crowley DE (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microb 66(1):345–351

    Article  CAS  Google Scholar 

  31. Rovira A (1969) Plant root exudates. Bot Rev 35(1):35–57

    Article  CAS  Google Scholar 

  32. Timmusk S, Grantcharova N, Wagner EG (2005) Paenibacillus polymyxa invades plant roots and forms biofilms. Appl Environ Microbiol 71(11):7292–7300. https://doi.org/10.1128/AEM.71.11.7292-7300.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li S, Zhang N, Zhang Z, Luo J, Shen B, Zhang R, Shen Q (2012) Antagonist Bacillus subtilis HJ5 controls Verticillium wilt of cotton by root colonization and biofilm formation. Biol Fertil Soils 49(3):295–303. https://doi.org/10.1007/s00374-012-0718-x

    Article  Google Scholar 

  34. Liu Y, Feng H, Chen L, Zhang H, Dong X, Xiong Q, Zhang R (2020) Root-secreted spermine binds to Bacillus amyloliquefaciens SQR9 histidine kinase KinD and modulates biofilm formation. Mol Plant Microbe. https://doi.org/10.1094/MPMI-07-19-0201-R

    Article  Google Scholar 

  35. Liu Y, Feng H, Fu R, Zhang N, Du W, Shen Q, Zhang R (2020) Induced root-secreted d-galactose functions as a chemoattractant and enhances the biofilm formation of Bacillus velezensis SQR9 in an McpA-dependent manner. Appl Microbiol Biotechnol 104(2):785–797. https://doi.org/10.1007/s00253-019-10265-8

    Article  CAS  PubMed  Google Scholar 

  36. Zhang W-W, Jiang T-F, Cui X, Qi F-J, Jian G-L (2012) Colonization in cotton plants by a green fluorescent protein labelled strain of Verticillium dahliae. Eur J Plant Pathol 135(4):867–876. https://doi.org/10.1007/s10658-012-0131-1

    Article  CAS  Google Scholar 

  37. Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256(1):67–83

    Article  CAS  Google Scholar 

  38. Scharf BE, Hynes MF, Alexandre GM (2016) Chemotaxis signaling systems in model beneficial plant-bacteria associations. Plant Mol Biol 90(6):549–559. https://doi.org/10.1007/s11103-016-0432-4

    Article  CAS  PubMed  Google Scholar 

  39. Martínez-Viveros O, Jorquera M, Crowley D, Gajardo G, Mora M (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10(3):293–319

    Article  Google Scholar 

  40. Schippers B, Bakker A, Bakker P, Van Peer R (1990) Beneficial and deleterious effects of HCN-producing pseudomonads on rhizosphere interactions. Plant Soil 129(1):75–83

    Article  CAS  Google Scholar 

  41. Dong L, Guo Q, Zhang X, Li S, Lu X, Ma P (2015) Effects of cotton root exudates on the biofilm formation and root colonization of Bacillus subtilis strain NCD-2. Acta Phytopathol Sin 45(05):541–547

    Google Scholar 

Download references

Acknowledgements

This work was funded by the National Key Research and Development Program of China (2017YFD0200400), the earmarked fund for China Agriculture Research System (CARS-15–17), the Chinese National Natural Science Foundation (31572051 and 31601680), and the Natural Science Foundation of Hebei Province (C2016301069 and C2017301069).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinggang Guo or Ping Ma.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

284_2020_1971_MOESM1_ESM.tif

Supplementary file1 (TIF 188 kb) Fig. S1 The biofilm formation of wild type strain NCD-2 and GFP-labeled strain NCD-2. The error bars indicate the standard deviations of the means calculated from three independent samples.

284_2020_1971_MOESM2_ESM.eps

Supplementary file2 (EPS 111363 kb) Fig. S2 Growth curve of the wild-type strain NCD-2 and the GFP-labeled strain NCD-2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, L., Guo, Q., Wang, P. et al. Qualitative and Quantitative Analyses of the Colonization Characteristics of Bacillus subtilis Strain NCD-2 on Cotton Root. Curr Microbiol 77, 1600–1609 (2020). https://doi.org/10.1007/s00284-020-01971-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-01971-y

Navigation