Skip to main content
Log in

Factors Enhancing the Antibacterial Effect of Monovalent Copper Ions

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

This study continues the series of experiments that demonstrate the high antibacterial properties of monovalent copper ions (Cu+). While in previous study we examined different metals (copper and silver) and their metal states (mono- and divalent), showing that monovalent copper is best for controlling bacterial growth, the current study focuses on finding conditions which further enhance the antibacterial effect of monovalent copper. This approach may also shed light on mechanisms of Cu+ ions which still remain unknown. To this end, the influence of Cu+ ions on model gram-negative Escherichia coli bacteria at different pH levels with a variety of carbon sources and elevated temperatures was examined. It was found that in both aerobic and anaerobic conditions in a poor growth medium, Cu2+ ions barely suppress any growth of E. coli, whereas Cu+ ions even at very low concentrations dramatically deplete bacterial populations in a time scale of minutes at room temperature, and less than one minute at elevated temperatures. Acidic pH, unfavorable carbon sources, and elevated temperatures boost the antibacterial action of Cu+ ions. On the whole, the study confirms that monovalent copper ions are strongly superior to divalent copper ions in their antibacterial action across a wide range of tested conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Borkow G, Gabbay J (2009) Copper, an ancient remedy returning to fight microbial, fungal and viral infections. Curr Chem Biol 3(3):272–278. https://doi.org/10.2174/187231309789054887

    Article  CAS  Google Scholar 

  2. Borkow G, Gabbay J (2004) Putting copper into action: copper-impregnated products with potent biocidal activities. FASEB J. 18:1728–1730. https://doi.org/10.1096/fj.04-2029fje

    Article  CAS  PubMed  Google Scholar 

  3. Casey AL, Adams D, Karpanen TJ, Lambert PA, Cookson BD, Nightingale P, Miruszenko L, Shillam R, Christian P, Elliott TS (2010) Role of copper in reducing hospital environment contamination. J Hosp Infect 74:72–77. https://doi.org/10.1016/j.jhin.2009.08.018

    Article  CAS  PubMed  Google Scholar 

  4. Mikolay A, Huggett S, Tikana L et al (2010) Survival of bacteria on metallic copper surfaces in a hospital trial. Appl Microbiol Biotechnol 87(5):1875–1879. https://doi.org/10.1007/s00253-010-2640-1

    Article  CAS  PubMed  Google Scholar 

  5. Lemire J, Harrison J, Turner R (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11:371–384. https://doi.org/10.1038/nrmicro3028

    Article  CAS  PubMed  Google Scholar 

  6. Quaranta D, Krans T, Santo CE et al (2011) Mechanisms of contact-mediated killing of yeast cells on dry metallic copper surfaces. Appl Environ Microbiol 77(2):416–426. https://doi.org/10.1128/AEM.01704-10

    Article  CAS  PubMed  Google Scholar 

  7. Michels HT, Noyce JO, Keevil CW (2009) Effects of temperature and humidity on the efficacy of methicillin-resistant Staphyllococcus aureus challenged antimicrobial materials containing silver and copper. Lett Appl Microbiol. 49(2):191–195. https://doi.org/10.1111/j.1472-765X.2009.02637.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Weaver L, Noyce JO, Michels HT, Keevil CW (2010) Potential action of copper surfaces on methicillin-resistant Staphylococcus aureus. J Appl Microbiol. 109(6):2200–2205. https://doi.org/10.1111/j.1365-2672.2010.04852.x

    Article  CAS  PubMed  Google Scholar 

  9. Santo CE, Quaranta D, Grass G (2012) Antimicrobial metallic copper surfaces kill Staphylococcus haemolyticus via membrane damage. Microbiologyopen 1(1):46–52. https://doi.org/10.1002/mbo3.2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Noyce JO, Michels H, Keevil CW (2006) Use of copper cast alloys to control Escherichia coli O157 cross-contamination during food processing. Appl Environ Microbiol 72:4239–4244. https://doi.org/10.1128/AEM.02532-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Grass G, Rensing C, Solioz M (2011) Metallic copper as an antimicrobial surface. Appl Environ Microbiol. 77(5):1541–1547. https://doi.org/10.1128/AEM.02766-10

    Article  CAS  PubMed  Google Scholar 

  12. Parker AJ (1973) Copper ions in acetonitrile. Search 4:426

    CAS  Google Scholar 

  13. Parker AJ, Macleod ID, Singh P (1981) Electrochemistry of copper in aqueous acetonitrile. J Solut Chem 10(11):757–774. https://doi.org/10.1007/BF00649487

    Article  Google Scholar 

  14. Pang J, Ritchie IM, Giles DE (1975) The kinetics of copper dissolution in acetonitrile-water copper(II) solutions. Electrochim Acta. 20(12):923–928

    Article  CAS  Google Scholar 

  15. Saphier M, Burg A, Sheps S, Cohen H, Meyerstein D (1999) Complexes of copper(I) with aromatic compounds in aqueous solutions. J Chem Soc Dalton Trans 11:1845–1849

    Article  Google Scholar 

  16. Domenech A et al (2000) Electrochemistry of copper complexes with polyaza[n] paracyclophanes, Influence of ATP as an exogen ligand on the relative stability of the Cu(II) and Cu(I) oxidation states. Inorg Chim Acta 299:238–246. https://doi.org/10.1016/S0020-1693(99)00506-X

    Article  CAS  Google Scholar 

  17. Saphier M, Silberstein E, Shotland Y, Popov S, Saphier O (2018) Prevalence of monovalent copper over divalent in killing Esherichia coli and Staphylococcus aureus. Curr Microbiol 75:426–430. https://doi.org/10.1007/s00284-017-1398-4

    Article  CAS  PubMed  Google Scholar 

  18. Abboud EC, Settle JC, Legare TB, Marcet JE, Barillo DJ, Sanchez JE (2014) Silver-based dressings for the reduction of surgical site infection: review of current experience and recommendation for future studies. Burns 40(Suppl 1):S30–S39. https://doi.org/10.1016/j.burns.2014.09.011

    Article  PubMed  Google Scholar 

  19. Outten FW, Huffman DL, Hale JA, O’Halloran TV (2001) The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J Biol Chem. 276(33):30670–30677. https://doi.org/10.1074/jbc.M104122200

    Article  CAS  PubMed  Google Scholar 

  20. Kim C, Wilkins K, Bowers M, Wynn C, Ndegwa E (2018) Influence of pH and temperature on growth characteristics of leading foodborne pathogens in a laboratory medium and select food beverages. Food Sci Nutr. https://doi.org/10.1002/fsn3.1034

    Article  PubMed  PubMed Central  Google Scholar 

  21. Buchanan RL, Klawitter LA (1992) The effect of incubation temperature, initial pH, and sodium chloride on the growth kinetics of Esherichia coli O157: H7. Food Microbiol 9(3):185–196. https://doi.org/10.1016/0740-0020(92)80046-7

    Article  CAS  Google Scholar 

  22. Aidelberg G, Towbin BD, Rothschild D, Dekel E, Bren A, Alon U (2014) Hierarchy of non-glucose sugars in Escherichia coli. BMC Syst Biol. 8:133. https://doi.org/10.1186/s12918-014-0133-z

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gabriel AA. (2012) Influences of heating temperature, pH, and soluble solids on the decimal reduction times of acid-adapted and non-adapted Escherichia coli O157:H7 (HCIPH 96055) in a defined liquid heating medium Int J Food Microbiol 160 (1):50–57.https://doi.org/10.1016/j.ijfoodmicro.2012.09.004

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yoram Shotland or Magal Saphier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popov, S., Saphier, O., Popov, M. et al. Factors Enhancing the Antibacterial Effect of Monovalent Copper Ions. Curr Microbiol 77, 361–368 (2020). https://doi.org/10.1007/s00284-019-01794-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01794-6

Navigation