Skip to main content
Log in

Characterization of a Novel Two-Component System in Burkholderia cenocepacia

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Two-component systems are important regulatory systems that allow bacteria to adjust to environmental conditions, and in some bacteria are used in pathogenesis. We identified a novel two-component system in Burkholderia cenocepacia, an opportunistic pathogen that causes pneumonia in cystic fibrosis (CF) patients. The putative operon encodes BceS, a sensor kinase, and BceR, a response regulator. Our studies indicated that the bceR mutant showed a statistically significant decrease in protease, swimming motility, and quorum sensing when compared to the wild-type, but there was no significant difference in phospholipase C activity, swarming, and biofilm formation. In addition, the mutant showed a statistically significant reduction in virulence compared to the wild-type using the alfalfa plant model. Examination of the Burkholderia cepacia complex (a group of organisms that are phenotypically similar, but genotypically distinct) revealed that this system is prevalent in B. ambifaria, B. multivorans, B. vietnamiensis and B. dolosa. Interestingly, all these organisms have been associated with CF patients. The collective results indicate that BceSR influences various activities important in Burkholderia physiology and possibly pathogenesis. This information could be important in the design of novel therapeutics for Burkholderia infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altschul SF, Madden TL, Schaffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Bernier SP, Silo-Suh L, Woods DE, Ohman DE, Sokol PA (2003) Comparative analysis of plant and animal models for characterization of Burkholderia cepacia virulence. Infect Immun 71:5306–5313

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Bhatt S, Weingart CL (2008) Identification of sodium chloride-regulated genes in Burkholderia cenocepacia. Curr Microbiol 56:418–422

    Article  CAS  PubMed  Google Scholar 

  4. Brencic A, McFarland KA, McManus R, Castang S, Mogno I, Dove SL, Lory S (2009) The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs. Mol Microbiol 73:434–445

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Bull CT, Duffy B, Voisard C, Defago G, Keel C, Haas D (2001) Characterization of spontaneous gacS and gacA regulatory mutants of Pseudomonas fluorescens biocontrol strain CHA0. Antonie Van Leeuwenhoek 79:327–336

    Article  CAS  PubMed  Google Scholar 

  6. Choi KS, Veeraragouda Y, Cho KM et al (2007) Effect of gacS and gacA mutations on colony architecture, surface motility, biofilm formation and chemical toxicity in Pseudomonas sp. KL28. J Microbiol 45:492–498

    CAS  PubMed  Google Scholar 

  7. Conway BD, Venu V, Speert DP (2002) Biofilm formation and acyl homoserine lactone production in the Burkholderia cepacia complex. J Bacteriol 184:5678–5685

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Darling P, Chan M, Cox AD et al (1998) Siderophore production by cystic fibrosis isolates of Burkholderia cepacia. Infect Immun 66:874–877

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Davies JA, Harrison JJ, Marques LLR et al (2007) The GacS sensor kinase controls phenotypic reversion of small colony variants isolated from biofilms of Pseudomonas aeruginosa PA14 FEMS. Microbiol Eco 59:32–46

    CAS  Google Scholar 

  10. de Souza JT, Mazzola M, Raaijmakers JM (2003) Conservation of the response regulator gene gacA in Pseudomonas species. Environ Microbiol 5:1328–1340

    Article  PubMed  Google Scholar 

  11. DeShazer D, Woods DE (1996) Broad-host-range cloning and cassette vectors based on the R388 trimethoprim resistance gene. BioTech 20:762–764

    CAS  Google Scholar 

  12. Figurski DH, Helinski DR (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci USA 76:1648–1652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Heeb S, Haas D (2001) Regulatory roles of the GacS/GacA two-component system in plant-associated and other gram negative bacteria. Mol Plant-Microbe Interact 14:1351–1363

    Article  CAS  PubMed  Google Scholar 

  14. Holden MTG, Seth-Smith HMB, Crossman LC et al (2009) The genome of Burkholderia cenocepacia J2315 an epidemic pathogen of cystic fibrosis patients. J Bacteriol 191:261–277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Isles A, Maclusky I, Corey M et al (1984) Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. J Pediatr 104:206–210

    Article  CAS  PubMed  Google Scholar 

  16. Kalogeraki VS, Winans SC (1997) Suicide plasmids containing promoterless reporter genes can simultaneously disrupt and create fusions to target genes of diverse bacteria. Gene 188:69–75

    Article  CAS  PubMed  Google Scholar 

  17. Lewenza S, Conway B, Greenberg EP, Sokol PA (1999) Quorum sensing in Burkholderia cepacia: identification of the LuxRI homologs CepRI. J Bacteriol 181:748–756

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Lewenza S, Visser MB, Sokol PA (2002) Interspecies communication between Burkholderia cepacia and Pseudomonas aeruginosa. Can J Microbiol 48:707–716

    Article  CAS  PubMed  Google Scholar 

  19. LiPuma JJ, Dasen SE, Nielson DW et al (1990) Person-to-person transmission of Pseudomonas cepacia between patients with cystic fibrosis. Lancet 336:1094–1096

    Article  CAS  PubMed  Google Scholar 

  20. Lonon MK, Hooke AM (1991) A nonhemolytic phospholipase C from Pseudomonas aeruginosa. Curr Microbiol 23:139–142

    Article  CAS  Google Scholar 

  21. Miller J (1972) Experiments in Molecular Genetics. Cold Spring Harbor, Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  22. Miller VL, Mekalanos JJ (1984) Synthesis of cholera toxin is positively regulated at the transcriptional level by toxR. Proc Natl Acad Sci USA 81:3471–3475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Naseby DC, Lynch JM (1999) Effects of Pseudomonas fluorescens F113 on ecological functions in the pea rhizosphere are dependent on pH. Microbiol Ecol 37:248–256

    Article  CAS  Google Scholar 

  24. Parkins MD, Ceri H, Storey GS (2001) Pseudomonas aeruginosa GacA, a factor in multihost virulence is also essential for biofilm formation. Mol Microbiol 40:1215–1226

    Article  CAS  PubMed  Google Scholar 

  25. Reimmann C, Beyeler M, Latifi A et al (1997) The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase. Mol Microbiol 24:309–319

    Article  CAS  PubMed  Google Scholar 

  26. Sokol PA, Ohman DE, Iglewski BH (1979) A more sensitive plate assay for detection of protease production by Pseudomonas aeruginosa. J Clin Microbiol 9:538–540

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Ann Rev. Biochem 69:183–215

    Article  CAS  Google Scholar 

  28. Vandamme P, Dawyndt P (2011) Classification and identification of the Burkholderia cepacia complex: past, present and future. Sys Appl Microbiol 34:87–95

    Article  CAS  Google Scholar 

  29. Vial L, Chapalain A, Groleau M-C, Deziel E (2011) The various lifestyles of the Burkholderia cepacia complex species: a tribute to adaptation. Environ Microbiol 13:1–12

    Article  CAS  PubMed  Google Scholar 

  30. Weingart CL, White CE, Liu S et al (2005) Direct binding of the quorum sensing regulator CepR of Burkholderia cenocepacia to two target promoters in vitro. Mol Microbiol 57:452–467

    Article  CAS  PubMed  Google Scholar 

  31. Winsor GL, Khaira B, Van Rossum T et al (2008) The Burkholderia Genome Database: facilitating flexible queries and comparative analyses. Bioinformatics 24:2803–2804

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Steve Winans for providing bacterial strains and plasmids. This work was funded in part by the Polly and Reid Anderson Endowment in the Sciences, and the Student Research and Grants Committee from Denison University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine L. Weingart.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merry, C.R., Perkins, M., Mu, L. et al. Characterization of a Novel Two-Component System in Burkholderia cenocepacia . Curr Microbiol 70, 556–561 (2015). https://doi.org/10.1007/s00284-014-0744-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-014-0744-z

Keywords

Navigation