Skip to main content
Log in

Research of Iron Reduction and the Iron Reductase Localization of Anammox Bacteria

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The iron-reducing capability of anammox bacteria was examined in this study using Percoll purified anammox bacteria. Anammox bacteria could reduce Fe(III) to Fe(II) with organic matters as the electron donor. The activity of anammox iron-reducing process was dependent on different electron donor, acceptor and pH. The highest iron-reducing activity of anammox bacteria was achieved with Fe(III)-NTA (nitrilotriacetic acid) as electron acceptor and formate as the electron donor at pH7. Similar to other iron reducers, 80 % of the iron reductase in anammox bacteria was located in the membrane fraction. Due to the chemical oxidant of NO2 and the NO3 dependent ferrous iron oxidation by anammox bacteria, the iron-reducing activity of anammox bacteria could be severely inhibited when iron-reducing pathway and the anammox process were coupled. However, the total nitrogen removal efficiency was not significantly affected in the presence of Fe(III). The iron-reducing capability of anammox bacteria could influence both N and Fe cycle on earth, and it is a potential way for wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56(6):1919–1925

    PubMed  CAS  PubMed Central  Google Scholar 

  2. APHA (1998) Standard methods for the examination of water and wastewater. United Book Press, Baltimore

    Google Scholar 

  3. Arrigo KR (2004) Marine microorganisms and global nutrient cycles. Nature 437:349–355

    Article  Google Scholar 

  4. Bonneville S, Van Cappellen P, Behrends T (2004) Microbial reduction of iron (III) oxyhydroxides: effects of mineral solubility and availability. Chem Geol 212:255–268

    Article  CAS  Google Scholar 

  5. Chistyakova N, Rusakov V, Nazarova K, Koksharov YA, Zavarzina D, Greneche JM (2008) Iron minerals formed by dissimilatory iron-and sulfur reducing bacteria studied by Mössbauer spectrometry. Hyperfine Interact 182:55–63

    Article  CAS  Google Scholar 

  6. Clément JC, Shrestha J, Ehrenfeld JG, Jaffé PR (2005) Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils. Soil Biol Biochem 37:2323–2328

    Article  Google Scholar 

  7. Coby AJ, Picardal FW (2005) Inhibition of NONO3 and NO2 reduction by microbial Fe(III) reduction: Evidence of a reaction between NO2 and cell surface-bound Fe2 +. Appl Environ Microbiol 71:5267–5274

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Cummings DE, March AW, Bostick B, Spring S, Caccavo F, Fendorf S, Rosenzweig RF (2000) Evidence for microbial Fe(III) reduction in anoxic, mining-impacted lake sediments (Lake Coeur d’Alene, Idaho). Appl Environ Microbiol 66:154–162

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. den Camp O, Kartal B, Guven D et al (2006) Global impact and application of the anaerobic ammonium-oxidizing (anammox) bacteria. Biochem Soc Trans 34:174–178

    Article  Google Scholar 

  10. DiCHRISTINA TJ (1992) Effects of nitrate and nitrite on dissimilatory iron reduction by Shewanella putrefaciens 200. J Bacteriol 174:1891–1896

    PubMed  CAS  PubMed Central  Google Scholar 

  11. Dobbin PS, Butt JN, Powell AK, Reid GA, Richardson DJ (1999) Characterization of a flavocytochrome that is induced during the anaerobic respiration of Fe3 + by Shewanella frigidimarina NCIMB400. Biochem J 342:439

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Emerson D, Fleming EJ, McBeth JM (2010) Iron-oxidizing bacteria: an environmental and genomic perspective. Annu Rev Microbiol 64:561–583

    Article  PubMed  CAS  Google Scholar 

  13. Fredrickson JK, Zachara JM, Balkwill DL, Kennedy D, Li SW, Kostandarithes HM, Daly MJ, Romine MF, Brockman FJ (2004) Geomicrobiology of high-level nuclear waste-contaminated vadose sediments at the Hanford Site, Washington state. Appl Environ Microbiol 70:4230–4241

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Güven D, Dapena A, Kartal B et al (2005) Propionate oxidation by and methanol inhibition of anaerobic ammonium-oxidizing bacteria. Appl Environ Microbiol 71:1066–1071

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gaspard S, Vazquez F, Holliger C (1998) Localization and solubilization of the iron (III) reductase of Geobacter sulfurreducens. Appl Environ Microbiol 64:3188–3194

    PubMed  CAS  PubMed Central  Google Scholar 

  16. Greene AC, Patel BKC, Sheehy AJ (1997) Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese-and iron-reducing bacterium isolated from a petroleum reservoir. Int J Syst Bacteriol 47:505–509

    Article  PubMed  CAS  Google Scholar 

  17. Haas JR, Dichristina TJ (2002) Effects of Fe(III) chemical speciation on dissimilatory Fe(III) reduction by Shewanella putrefaciens. Environ Sci Technol 36:373–380

    Article  PubMed  CAS  Google Scholar 

  18. Hu B, Shen L, Xu X, Zheng P (2011) Anaerobic ammonium oxidation (anammox) in different natural ecosystems. Biochem Soc Trans 39:1811

    Article  PubMed  CAS  Google Scholar 

  19. Inoue K, Qian X, Morgado L, Kim BC, Mester T, Izallalen M, Salgueiro CA, Lovley DR (2010) Purification and characterization of OmcZ, an outer-surface, octaheme c-type cytochrome essential for optimal current production by Geobacter sulfurreducens. Appl Environ Microbiol 76:3999–4007

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Jetten M, Schmid M, van de Pas-Schoonen K, Sinninghe Damsté J, Strous M (2005) Anammox organisms: enrichment, cultivation, and environmental analysis. Methods Enzymol 397:34–57

    Article  PubMed  CAS  Google Scholar 

  21. Jetten MSM, Niftrik L, Strous M, Kartal B, Keltjens JT, Op den Camp HJM (2009) Biochemistry and molecular biology of anammox bacteria. Crit Rev Biochem Mol Biol 44:65–84

    PubMed  CAS  Google Scholar 

  22. Kampschreur MJ, Kleerebezem R, de Vet WWJM, van Loosdrecht M (2011) Reduced iron induced nitric oxide and nitrous oxide emission. Water Res 45:5945–5952

    Article  PubMed  CAS  Google Scholar 

  23. Karlsson R, Karlsson A, Bäckman O, Johansson BR, Hulth S (2009) Identification of key proteins involved in the anammox reaction. FEMS Microbiol Lett 297:87–94

    Article  PubMed  CAS  Google Scholar 

  24. Kartal B, Geerts W, Jetten MS (2011) Cultivation, detection, and ecophysiology of anaerobic ammonium-oxidizing bacteria. Methods Enzymol 486:89–108

    Article  PubMed  CAS  Google Scholar 

  25. Kartal B, Almeida NM, Maalcke WJ, Camp HJ, Jetten MS, Keltjens JT (2013) How to make a living from anaerobic ammonium oxidation. FEMS Microbiol Rev 37:428–461

    Article  PubMed  CAS  Google Scholar 

  26. Kartal B, Maalcke WJ, de Almeida NM et al (2011) Molecular mechanism of anaerobic ammonium oxidation. Nature 479:127–130

    Article  PubMed  CAS  Google Scholar 

  27. Liu S, Gong Z, Yang F, Zhang H, Shi L, Furukawa K (2008) Combined process of urea nitrogen removal in anaerobic Anammox co-culture reactor. Bioresour Technol 99:1722–1728

    Article  PubMed  CAS  Google Scholar 

  28. Lovley DR (2000) Fe(III) and Mn(IV) reduction. Environmental microbe-metal interactions. ASM Press, Washington, pp 3–30

    Chapter  Google Scholar 

  29. Myers CR, Myers JM (1992) Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1. J Bacteriol 174:3429–3438

    PubMed  CAS  PubMed Central  Google Scholar 

  30. Myers CR, Myers JM (1993) Ferric reductase is associated with the membranes of anaerobically grown Shewanella putrefaciens MR-1. FEMS Microbiol Lett 108:15–22

    Article  CAS  Google Scholar 

  31. Nielsen JL, Juretschko S, Wagner M, Nielsen PH (2002) Abundance and phylogenetic affiliation of iron reducers in activated sludge as assessed by fluorescence in situ hybridization and microautoradiography. Appl Environ Microbiol 68:4629–4636

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Oshiki M, Ishii S, Yoshida K, Fujii N, Ishiguro M, Satoh H, Okabe S (2013) Nitrate-dependent ferrous iron oxidation by anaerobic ammonium oxidation (anammox) bacteria. Appl Environ Microbiol 79:4087–4093

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Park W, Nam Y-K, Lee M-J, Kim T-H (2009) Anaerobic ammonia-oxidation coupled with Fe3 + reduction by an anaerobic culture from a piggery wastewater acclimated to NH4 +/Fe3 + medium. Biotechnol Bioprocess Eng 14:680–685

    Article  CAS  Google Scholar 

  34. Pepper S, Borkowski M, Richmann M, Reed D (2010) Determination of ferrous and ferric iron in aqueous biological solutions. Anal Chim Acta 663:172–177

    Article  PubMed  CAS  Google Scholar 

  35. Pernthaler J, Glöckner FO, Schönhuber W, Amann R (2001) Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes. Methods microbiol 30:207–226

    Article  CAS  Google Scholar 

  36. Ruebush SS, Brantley SL, Tien M (2006) Reduction of soluble and insoluble iron forms by membrane fractions of Shewanella oneidensis grown under aerobic and anaerobic conditions. Appl Environ Microbiol 72:2925–2935

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Schmid M, Schmitz-Esser S, Jetten M, Wagner M (2001) 16S–23S rDNA intergenic spacer and 23S rDNA of anaerobic ammonium-oxidizing bacteria: implications for phylogeny and in situ detection. Environ Microbiol 3:450–459

    Article  PubMed  CAS  Google Scholar 

  38. Schmid MC, Maas B, Dapena A et al (2005) Biomarkers for in situ detection of anaerobic ammonium-oxidizing (anammox) bacteria. Appl Environ Microbiol 71:1677–1684

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Schouten S, Strous M, Kuypers MMM, Rijpstra WIC, Baas M, Schubert CJ, Jetten MSM, Damsté JSS (2004) Stable carbon isotopic fractionations associated with inorganic carbon fixation by anaerobic ammonium-oxidizing bacteria. Appl Environ Microbiol 70:3785–3788

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Stein LY, La Duc MT, Grundl TJ, Nealson KH (2002) Bacterial and archaeal populations associated with freshwater ferromanganous micronodules and sediments. Environ Microbiol 3:10–18

    Article  Google Scholar 

  41. Stookey LL (1970) Ferrozine—a new spectrophotometric reagent for iron. Anal Chem 42:779–781

    Article  CAS  Google Scholar 

  42. Strous M, Fuerst JA, Kramer EH, Logemann S, Muyzer G, van de Pas-Schoonen KT, Webb R, Kuenen JG, Jetten MS (1999) Missing lithotroph identified as new planctomycete. Nature 400:446–449

    Article  PubMed  CAS  Google Scholar 

  43. Strous M, Pelletier E, Mangenot S et al (2006) Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440:790–794

    Article  PubMed  Google Scholar 

  44. Van de Graaf AA, de Bruijn P, Robertson LA, Jetten MSM, Kuenen JG (1996) Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology 142:2187–2196

    Article  Google Scholar 

  45. van Niftrik L, Geerts WJC, van Donselaar EG, Humbel BM, Yakushevska A, Verkleij AJ, Jetten MSM, Strous M (2008) Combined structural and chemical analysis of the anammoxosome: a membrane-bounded intracytoplasmic compartment in anammox bacteria. J Struct Biol 161:401–410

    Article  PubMed  Google Scholar 

  46. Van Niftrik L, Geerts WJC, Van Donselaar EG, Humbel BM, Webb RI, Fuerst JA, Verkleij AJ, Jetten MSM, Strous M (2008) Linking ultrastructure and function in four genera of anaerobic ammonium-oxidizing bacteria: cell plan, glycogen storage, and localization of cytochrome C proteins. J Bacteriol 190:708–717

    Article  PubMed  PubMed Central  Google Scholar 

  47. Vargas M, Kashefi K, Blunt-Harris EL, Lovley DR (1998) Microbiological evidence for Fe(III) reduction on early earth. Nature 395:65–67

    Article  PubMed  CAS  Google Scholar 

  48. Vorhies JS, Gaines RR (2009) Microbial dissolution of clay minerals as a source of iron and silica in marine sediments. Nat Geosci 2(3)

  49. Wang Z, Liu C, Wang X et al (2008) Kinetics of reduction of Fe(III) complexes by outer membrane cytochromes MtrC and OmcA of Shewanella oneidensis MR-1. Appl Environ Microbiol 74:6746–6755

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Yang WH, Weber KA, Silver WL (2012) Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction. Nat Geosci 5:538–541

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to show our deepest gratitude to the Specialized Research Fund for the Doctoral Program of Higher Education of China (20110041110002) and Major State Science and Technology Water Projects (No.2013ZX07202010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanmin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, R., Zhang, H., Li, Y. et al. Research of Iron Reduction and the Iron Reductase Localization of Anammox Bacteria. Curr Microbiol 69, 880–887 (2014). https://doi.org/10.1007/s00284-014-0668-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-014-0668-7

Keywords

Navigation