Skip to main content
Log in

Stratified Communities of Active Archaea in Shallow Sediments of the Pearl River Estuary, Southern China

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Marine subsurface sediments represent a novel archaeal biosphere with unknown physiology. To get to know the composition and ecological roles of the archaeal communities within the sediments of the Pearl River Estuary, Southern China, the diversity and vertical distribution of active archaea in a sediment core were characterized by 16S rRNA phylogenetic analysis of clone libraries derived from RNA. In this study, the archaeal diversity above, within, and beneath the sulfate-methane transition zone (SMTZ) in the Pearl River Estuary sediment core was described. The majority of the clones obtained from the metabolically active fraction of the archaeal community were most closely related to miscellaneous crenarchaeotal group and terrestrial miscellaneous euryarchaeotal group. Notably, although the Pearl River Estuary sediment belong to high methane and high organic carbon environment, sequences affiliated with methanotrophic and methanogenic archaea were detected as minor group in 16S rRNA clone libraries. No obvious evidence suggested that these unknown archaeal phylotypes related directly to anaerobic oxidation of methane in SMTZ. This is the first phylogenetic analysis of the metabolically active fraction of the archaeal community in the coastal sediment environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Biddle JF, Lipp JS, Lever MA, Lloyd KG et al (2006) Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. Proc Natl Acad Sci USA 103:38–46

    Article  Google Scholar 

  2. Boetius A, Ravenschlag K, Schubert CJ, Rickert D et al (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  PubMed  CAS  Google Scholar 

  3. Cai WJ, Dai M, Wang Y, Zhai W et al (2004) The biogeochemistry of inorganic carbon and nutrients in the Pearl River estuary and the adjacent Northern South China Sea. Cont Shelf Res 24:1301–1319

    Article  Google Scholar 

  4. D’Hondt S, Jrgensen BB, Miller DJ, Batzke A et al (2004) Distributions of microbial activities in deep subseafloor sediments. Science 306:2216–2221

    Article  PubMed  Google Scholar 

  5. D’Hondt S, Rutherford S, Spivack AJ (2002) Metabolic activity of subsurface life in deep-sea sediments. Science 295:2067–2270

    Article  PubMed  Google Scholar 

  6. DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689

    Article  PubMed  CAS  Google Scholar 

  7. Fuhrman JA (1992) Novel major archaebacterial group from marine plankton. Nature 356:148–149

    Article  PubMed  CAS  Google Scholar 

  8. Harrison BK, Zhang H, Berelson W, Orphan VJ (2009) Variations in archaeal and bacterial diversity associated with the sulfate-methane transition zone in continental margin sediments (Santa Barbara Basin, California). Appl Environ Microbiol 75:1487–1499

    Article  PubMed  CAS  Google Scholar 

  9. Huang X, Huang L, Yue W (2003) The characteristics of nutrients and eutrophication in the Pearl River estuary, South China. Mar Pollut Bull 47:30–36

    Article  PubMed  CAS  Google Scholar 

  10. Inagaki F, Nunoura T, Nakagawa S, Teske A et al (2006) Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proc Natl Acad Sci USA 103:2815–2820

    Article  PubMed  CAS  Google Scholar 

  11. Inagaki F, Okada H, Tsapin AI, Nealson KH (2005) Microbial survival: the paleome: a sedimentary genetic record of past microbial communities. Astrobiology 5:141–153

    Article  PubMed  CAS  Google Scholar 

  12. Inagaki F, Suzuki M, Takai K, Oida H et al (2003) Microbial communities associated with geological horizons in coastal subseafloor sediments from the Sea of Okhotsk. Appl Environ Microbiol 69:7224–7235

    Article  PubMed  CAS  Google Scholar 

  13. Inagaki F, Takai K, Komatsu T, Kanamatsu T et al (2001) Archaeology of Archaea: geomicrobiological record of Pleistocene thermal events concealed in a deep-sea subseafloor environment. Extremophiles 5:385–392

    Article  PubMed  CAS  Google Scholar 

  14. Jiang L, Zheng Y, Chen J, Xiao X et al (2011) Stratification of Archaeal communities in shallow sediments of the Pearl River Estuary, Southern China. Antonie Van Leeuwenhoek 99:739–751

    Article  PubMed  CAS  Google Scholar 

  15. Jurgens G, Glckner FO, Amann R, Saano A et al (2000) Identification of novel Archaea in bacterioplankton of a boreal forest lake by phylogenetic analysis and fluorescent in situ hybridization1. FEMS Microbiol Ecol 34:45–56

    PubMed  CAS  Google Scholar 

  16. Könneke M, Bernhard AE, de la Torré JR, Walker CB et al (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546

    Article  PubMed  Google Scholar 

  17. Kasai Y, Takahata Y, Hoaki T, Watanabe K (2005) Physiological and molecular characterization of a microbial community established in unsaturated, petroleum-contaminated soil. Environ Microbiol 7:806–818

    Article  PubMed  CAS  Google Scholar 

  18. Kemp P, Lee S, LARoche J (1993) Estimating the growth rate of slowly growing marine bacteria from RNA content. Appl Environ Microbiol 59:2594–2601

    PubMed  CAS  Google Scholar 

  19. Kerkhof L, Kemp P (1999) Small ribosomal RNA content in marine Proteobacteria during non-steady state growth. FEMS Microbiol Ecol 30:253–260

    Article  PubMed  CAS  Google Scholar 

  20. Kerkhof L, Ward B (1993) Comparison of nucleic acid hybridization and fluorometry for measurement of the relationship between RNA/DNA ratio and growth rate in a marine bacterium. Appl Environ Microbiol 59:1303–1307

    PubMed  CAS  Google Scholar 

  21. Knittel K, Losekann T, Boetius A, Kort R et al (2005) Diversity and distribution of methanotrophic archaea at cold seeps. Appl Environ Microbiol 71:467–478

    Article  PubMed  CAS  Google Scholar 

  22. Koch M, Rudolph C, Moissl C, Huber R (2006) A cold-loving crenarchaeon is a substantial part of a novel microbial community in cold sulphidic marsh water. FEMS Microbiol Ecol 57:55–66

    Article  PubMed  CAS  Google Scholar 

  23. Kreb CJ, Elzinga C, Salzer D, Willoughby J et al (1989) Ecological methodology. Harper and Row, New York

    Google Scholar 

  24. Kvenvolden KA (1993) Gas hydrates-geological perspective and global change. Rev Geophys 31:173–187

    Article  Google Scholar 

  25. Lanoil BD, Sassen R, La Duc MT, Sweet ST et al (2001) Bacteria and archaea physically associated with Gulf of Mexico gas hydrates. Appl Environ Microbiol 67:5143–5153

    Article  PubMed  CAS  Google Scholar 

  26. Lee SH, Kemp PF (1994) Single-cell RNA content of natural marine planktonic bacteria measured by hybridization with multiple 16S rRNA-targeted fluorescent probes. Limnol Oceanogr 39:869–879

    Article  CAS  Google Scholar 

  27. Lipp JS, Morono Y, Inagaki F, Hinrichs KU (2008) Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature 454:991–994

    Article  PubMed  CAS  Google Scholar 

  28. Martinez RJ, Mills HJ, Story S, Sobecky PA (2006) Prokaryotic diversity and metabolically active microbial populations in sediments from an active mud volcano in the Gulf of Mexico. Environ Microbiol 8:1783–1796

    Article  PubMed  CAS  Google Scholar 

  29. Mengoni A, Tatti E, Decorosi F, Viti C et al (2005) Comparison of 16S rRNA and 16S rDNA T-RFLP approaches to study bacterial communities in soil microcosms treated with chromate as perturbing agent. Microbiol Ecol 50:375–384

    Article  CAS  Google Scholar 

  30. Moeseneder MM, Arrieta JM, Herndl GJ (2005) A comparison of DNA- and RNA-based clone libraries from the same marine bacterioplankton community. FEMS Microbiol Ecol 51:341–352

    Article  PubMed  CAS  Google Scholar 

  31. Nauhaus K, Boetius A, Kroger M, Widdel F (2002) In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environ Microbiol 4:296–305

    Article  PubMed  CAS  Google Scholar 

  32. Orphan VJ, House CH, Hinrichs KU, McKeegan KD et al (2002) Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc Natl Acad Sci USA 99:7663–7671

    Article  PubMed  CAS  Google Scholar 

  33. Pachiadaki MG, Lykousis V, Stefanou EG, Kormas KA (2010) Prokaryotic community structure and diversity in the sediments of an active submarine mud volcano (Kazan mud volcano, East Mediterranean Sea). FEMS Microbiol Ecol 72:429–444

    Article  PubMed  CAS  Google Scholar 

  34. Parkes RJ, Cragg BA, Wellsbury P (2000) Recent studies on bacterial populations and processes in subseafloor sediments: a review. Hydrogeol J 8:11–28

    Article  Google Scholar 

  35. Shalini A, Ramesh R, Purvaja R, Barnes J (2006) Spatial and temporal distribution of methane in an extensive shallow estuary, south India. J Earth Syst Sci 115:451–460

    Article  Google Scholar 

  36. Sorensen K, Lauer A, Teske A (2004) Archaeal phylotypes in a metal-rich and low-activity deep subsurface sediment of the Peru Basin. Geobiology 2:151–161

    Article  CAS  Google Scholar 

  37. Sorensen KB, Teske A (2006) Stratified communities of active archaea in deep marine subsurface sediments. Appl Environ Microbiol 72:4596

    Article  PubMed  CAS  Google Scholar 

  38. Takai K, Komatsu T, Inagaki F, Horikoshi K (2001) Distribution of archaea in a black smoker chimney structure. Appl Environ Microbiol 67:3618–3629

    Article  PubMed  CAS  Google Scholar 

  39. Takai K, Moser DP, DeFlaun M, Onstott TC et al (2001) Archaeal diversity in waters from deep South African gold mines. Appl Environ Microbiol 67:5750–5760

    Article  PubMed  CAS  Google Scholar 

  40. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  41. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F et al (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  42. Thomsen TR, Finster K, Ramsing NB (2001) Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment. Appl Environ Microbiol 67:1646–1656

    Article  PubMed  CAS  Google Scholar 

  43. Vetriani C, Jannasch HW, MacGregor BJ, Stahl DA et al (1999) Population structure and phylogenetic characterization of marine benthic archaea in deep-sea sediments. Appl Environ Microbiol 65:4375–4384

    PubMed  CAS  Google Scholar 

  44. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583

    Article  PubMed  CAS  Google Scholar 

  45. Wilms R, Sass H, Kopke B, Cypionka H et al (2007) Methane and sulfate profiles within the subsurface of a tidal flat are reflected by the distribution of sulfate-reducing bacteria and methanogenic archaea. FEMS Microbiol Ecol 59:611–621

    Article  PubMed  CAS  Google Scholar 

  46. Yan B, Hong K, Yu ZN (2006) Archaeal communities in mangrove soil characterized by 16S rRNA gene clones. J Microbiol 44:566–571

    PubMed  CAS  Google Scholar 

  47. Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study has been partly supported by the Natural Science Foundation of China (Grant Number 51168046), the National High-Tech Program (2007AA091904), COMRA fund (DYXM-115-02-2-01). Additional supports were provided by grants from the Third Institute of Oceanography, State Oceanic Administration, and from the State Key Laboratory of Marine Geology, Tongji University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengping Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Wang, F., Jiang, L. et al. Stratified Communities of Active Archaea in Shallow Sediments of the Pearl River Estuary, Southern China. Curr Microbiol 67, 41–50 (2013). https://doi.org/10.1007/s00284-013-0320-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-013-0320-y

Keywords

Navigation