Skip to main content

Advertisement

Log in

Analysis of Aztreonam-Inducing Proteome Changes in Nondividing Filamentous Helicobacter pylori

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

When stressed, bacteria can enter various nondividing states. In the present study, nondividing filamentous form in Helicobacter pylori was induced by a β-lactam antibiotic, aztreonam. In order to find possible cell division checkpoints in H. pylori, 2-DE was used to compare the proteomic profile of nondividing filamentous H. pylori with its spiral form. In total, 21 proteins involved in various cellular processes showed differential expression. One protein induced by aztreonam was a cell division inhibitor (minD), related to cell division. We then constructed the deletion mutant of minD in H. pylori 26695. Scanning electron microscope observation showed that the deletion of this protein provoked some bacteria to change into a short rod-shape and the viability of the mutant is lower than that of the wild type. Moreover, sequence comparison showed that minD of H. pylori and that of Escherichia coli share 50 % amino acid identity. This suggested that this protein possibly plays the similar part in H. pylori as in E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. McAtee CP, Hoffman PS, Berg DE (2001) Identification of differentially regulated proteins in metronidazole resistant Helicobacter pylori by proteome techniques. Proteomics 1:516–521. doi:10.1002/1615-9861(200104

    Article  PubMed  CAS  Google Scholar 

  2. Takeuchi H, Shirai M, Akada JK, Tsuda M, Nakazawa T (1998) Nucleotide sequence and characterization of cdrA, a cell division-related gene of Helicobacter pylori. J Bacteriol 180:5263–5268

    PubMed  CAS  Google Scholar 

  3. Horii T, Mase K, Suzuki Y, Kimura T, Ohta M, Maekawa M, Kanno T, Kobayashi M (2002) Antibacterial activities of beta-lactamase inhibitors associated with morphological changes of cell wall in Helicobacter pylori. Helicobacter 7:39–45. doi:10.1046/j.1523-5378.2002.00054.x

    Article  PubMed  CAS  Google Scholar 

  4. DeLoney CR, Schiller NL (1999) Competition of various beta-lactam antibiotics for the major penicillin-binding proteins of Helicobacter pylori: antibacterial activity and effects on bacterial morphology. Antimicrob Agents Chemother 43:2702–2709

    PubMed  CAS  Google Scholar 

  5. Keep NH, Ward JM, Cohen-Gonsaud M, Henderson B (2006) Wake up! Peptidoglycan lysis and bacterial non-growth states. Trends Microbiol 14:271–276. doi:10.1016/j.tim.2006.04.003

    Article  PubMed  CAS  Google Scholar 

  6. Errington J, Daniel RA, Scheffers DJ (2003) Cytokinesis in bacteria. Microbiol Mol Biol Rev 67:52–65. doi:10.1128/MMBR.67.1.52-65.2003

    Article  PubMed  CAS  Google Scholar 

  7. Arends SJ, Weiss DS (2004) Inhibiting cell division in Escherichia coli has little if any effect on gene expression. J Bacteriol 186:880–884. doi:10.1128/JB.186.3.880-884.2004

    Article  PubMed  CAS  Google Scholar 

  8. Krishnamurthy P, Parlow MH, Schneider J, Burroughs S, Wickland C, Vakil NB, Dunn BE, Phadnis SH (1999) Identification of a novel penicillin-binding protein from Helicobacter pylori. J Bacteriol 181:5107–5110

    PubMed  CAS  Google Scholar 

  9. Shao C, Zhang Q, Sun Y, Liu Z, Zeng J, Zhou Y, Yu X, Jia J (2008) Helicobacter pylori protein response to human bile stress. J Med Microbiol 57:151–158. doi:10.1099/jmm.0.47616-0

    Article  PubMed  CAS  Google Scholar 

  10. Loughlin MF, Barnard FM, Jenkins D, Sharples GJ, Jenks PJ (2003) Helicobacter pylori mutants defective in RuvC Holliday junction resolvase display reduced macrophage survival and spontaneous clearance from the murine gastric mucosa. Infect Immun 71:2022–2031. doi:10.1128/IAI.71.4.2022-2031.2003

    Article  PubMed  CAS  Google Scholar 

  11. Kim JS, Chang JH, Chung SI, Yum JS (1999) Molecular cloning and characterization of the Helicobacter pylori fliD gene, an essential factor in flagellar structure and motility. J Bacteriol 181:6969–6976

    PubMed  CAS  Google Scholar 

  12. Popham DL, Young KD (2003) Role of penicillin-binding proteins in bacterial cell morphogenesis. Curr Opin Microbiol 6:594–599. doi:10.1016/j.mib.2003.10.002

    Article  PubMed  CAS  Google Scholar 

  13. Spohn G, Scarlato V (1999) The autoregulatory HspR repressor protein governs chaperone gene transcription in Helicobacter pylori. Mol Microbiol 34:663–674. doi:10.1046/j.1365-2958.1999.01625.x

    Article  PubMed  CAS  Google Scholar 

  14. Sánchez B, Champomier-Vergès MC, Anglade P, Baraige F, de Los Reyes-Gavilán CG, Margolles A, Zagorec M (2005) Proteomic analysis of global changes in protein expression during bile salt exposure of Bifidobacterium longum NCIMB 8809. J Bacteriol 187:5799–5808. doi:10.1128/JB.187.16.5799-5808.2005

    Article  PubMed  Google Scholar 

  15. Shao C, Zhang Q, Tang W, Qu W, Zhou Y, Sun Y, Yu H, Jia J (2008) The changes of proteomes components of Helicobacter pylori in response to acid stress without urea. J Microbiol 46:331–337. doi:10.1007/s12275-008-0062-x

    Article  PubMed  CAS  Google Scholar 

  16. Seyler RW, Olson JW, Maier RJ (2001) Superoxide dismutase-deficient mutants of Helicobacter pylori are hypersensitive to oxidative stress and defective in host colonization. Infect Immun 69:4034–4040. doi:10.1128/IAI.69.6.4034-4040.2001

    Article  PubMed  CAS  Google Scholar 

  17. Kim MK, Song HE, Kim YS, Rho SH, Im YJ, Lee JH, Kang GB, Eom SH (2003) Crystallization and preliminary X-ray crystallographic analysis of orotate phosphoribosyl transferase from Helicobacter pylori. Mol Cells 15:361–363

    PubMed  CAS  Google Scholar 

  18. Cordell SC, Löwe J (2001) Crystal structure of the bacterial cell division regulator MinD. FEBS Lett 492:160–165. doi:10.1016/S0014-5793(01)02216-5

    Article  PubMed  CAS  Google Scholar 

  19. Harry EJ, Lewis PJ (2003) Early targeting of Min proteins to the cell poles in germinated spores of Bacillus subtilis: evidence for division apparatus-independent recruitment of Min proteins to the division site. Mol Microbiol 47:37–48. doi:10.1046/j.1365-2958.2003.03253.x

    Article  PubMed  CAS  Google Scholar 

  20. Karoui ME, Errington J (2001) Isolation and characterization of topological specificity mutants of minD in Bacillus subtilis. Mol Microbiol 42:1211–1221. doi:10.1046/j.1365-2958.2001.02710.x

    Article  PubMed  CAS  Google Scholar 

  21. Pichoff S, Lutkenhaus J (2001) Escherichia coli division inhibitor MinCD blocks septation by preventing Z-ring formation. J Bacteriol 183:6630–6635. doi:10.1128/JB.183.22.6630-6635.2001

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No: 30770118, 30972775, 30800037, 30800406, 81071313, 81001098, 81000868, and 30971151) and the Science Foundation of Shandong Province, PR China (No: ZR2009CZ001 and ZR2009CM002). We gratefully acknowledge the invaluable help of Jissica Link for critically reading this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhong Shao.

Additional information

Chunhong Shao and Yabin Zhou contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, C., Zhou, Y., Sun, Y. et al. Analysis of Aztreonam-Inducing Proteome Changes in Nondividing Filamentous Helicobacter pylori . Curr Microbiol 65, 108–115 (2012). https://doi.org/10.1007/s00284-012-0132-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-012-0132-5

Keywords

Navigation