Skip to main content
Log in

Interactions of Leptospira with Environmental Bacteria from Surface Water

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Leptospires can persist for months in nutrient-poor aqueous environments prior to transmission to a mammalian host. Interactions with environmental bacteria and biofilm formation are possible mechanisms of persistence of leptospires in the environment. Bacteria isolated from rivers in the Ecuadorian rainforest were tested for their ability to support leptospiral viability. We found that co-culture with Sphingomonas spp., but not Flavobacterium spp. or Delftia spp., enabled survival of L. biflexa and L. meyeri for up to a year in distilled water. We also found that L. interrogans biofilms formed in distilled water contained viable organisms that rapidly dispersed into the planktonic phase in the presence of nutrients in serum or EMJH medium. These data inform our understanding of leptospiral survival strategies that enable long-term persistence in nutrient-poor conditions yet allow rapid mobilization when nutrients become available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Anderson DC, Folland DS, Fox MD et al (1978) Leptospirosis: a common-source outbreak due to leptospires of the grippotyphosa serogroup. Am J Epidemiol 107:538–544

    PubMed  CAS  Google Scholar 

  2. Bulach DM, Zuerner RL, Wilson P et al (2006) Genome reduction in Leptospira borgpetersenii reflects limited transmission potential. Proc Natl Acad Sci USA 103:14560–14565

    Article  PubMed  Google Scholar 

  3. Casjens S, Palmer N, van Vugt R et al (2000) A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol 35:490–516

    Article  PubMed  CAS  Google Scholar 

  4. Chang SL, Buckingham M, Taylor MP (1948) Studies on Leptospira icterohaemorrhagiae; survival in water and sewage; destruction in water by halogen compounds, synthetic detergents, and heat. J Infect Dis 82:256–266

    Article  PubMed  CAS  Google Scholar 

  5. Douglin CP, Jordan C, Rock R et al (1997) Risk factors for severe leptospirosis in the parish of St. Andrew, Barbados. Emerg Infect Dis 3:78–80

    Article  PubMed  CAS  Google Scholar 

  6. Fraser CM, Norris SJ, Weinstock GM et al (1998) Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 281:375–388

    Article  PubMed  CAS  Google Scholar 

  7. Haake DA, Dundoo M, Cader R et al (2002) Leptospirosis, water sports, and chemoprophylaxis. Clin Infect Dis 34:e40–43

    Article  PubMed  Google Scholar 

  8. Henry RA, Johnson RC (1978) Distribution of the genus Leptospira in soil and water. Appl Environ Microbiol 35:492–499

    PubMed  CAS  Google Scholar 

  9. Herrmann-Storck C, Brioudes A, Quirin R et al (2005) Retrospective review of leptospirosis in Guadeloupe, French West Indies 1994–2001. West Indian Med J 54:42–46

    Article  PubMed  CAS  Google Scholar 

  10. Islam MS, Rahim Z, Alam MJ et al (1999) Association of Vibrio cholerae O1 with the cyanobacterium. Anabaena sp., elucidated by polymerase chain reaction and transmission electron microscopy. Trans R Soc Trop Med Hyg 93:36–40

    Article  PubMed  CAS  Google Scholar 

  11. Johnson RC, Harris VG (1967) Differentiation of pathogenic and saprophytic letospires. I. Growth at low temperatures. J Bacteriol 94:27–31

    PubMed  CAS  Google Scholar 

  12. Karaseva EV, Chernukha YG, Piskunova LA (1973) Results of studying the time of survival of pathogenic leptospira under natural conditions. J Hyg Epidemiol Microbiol Immunol 17:339–345

    PubMed  CAS  Google Scholar 

  13. Kirschner AK, Schlesinger J, Farnleitner AH et al (2008) Rapid growth of planktonic Vibrio cholerae non-O1/non-O139 strains in a large alkaline lake in Austria: dependence on temperature and dissolved organic carbon quality. Appl Environ Microbiol 74:2004–2015

    Article  PubMed  CAS  Google Scholar 

  14. Ko AI, Goarant C, Picardeau M (2009) Leptospira: the dawn of the molecular genetics era for an emerging zoonotic pathogen. Nat Rev Microbiol 7:736–747

    Article  PubMed  CAS  Google Scholar 

  15. Lane DJ, Stackebrandt E, Goodfellow M (1991) 16S/23S rRNA sequencing. In: Stackebrant E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, London, pp 115–175

    Google Scholar 

  16. Levett PN (2001) Leptospirosis. Clin Microbiol Rev 14:296–326

    Article  PubMed  CAS  Google Scholar 

  17. Meites E, Jay MT, Deresinski S et al (2004) Reemerging leptospirosis, California. Emerg Infect Dis 10:406–412

    PubMed  Google Scholar 

  18. Merien F, Amouriaux P, Perolat P et al (1992) Polymerase chain reaction for detection of Leptospira spp. in clinical samples. J Clin Microbiol 30:2219–2224

    PubMed  CAS  Google Scholar 

  19. Moon-van der Staay SY, De Wachter R, Vaulot D (2001) Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409:607–610

    Article  PubMed  CAS  Google Scholar 

  20. Morey RE, Galloway RL, Bragg SL et al (2006) Species-specific identification of Leptospiraceae by 16S rRNA gene sequencing. J Clin Microbiol 44:3510–3516

    Article  PubMed  CAS  Google Scholar 

  21. Morgan J, Bornstein SL, Karpati AM et al (2002) Outbreak of leptospirosis among triathlon participants and community residents in Springfield, Illinois, 1998. Clin Infect Dis 34:1593–1599

    Article  PubMed  Google Scholar 

  22. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  23. Narita M, Fujitani S, Haake DA et al (2005) Leptospirosis after recreational exposure to water in the Yaeyama islands, Japan. Am J Trop Med Hyg 73:652–656

    PubMed  Google Scholar 

  24. Nascimento AL, Ko AI, Martins EA et al (2004) Comparative genomics of two Leptospira interrogans serovars reveals novel insights into physiology and pathogenesis. J Bacteriol 186:2164–2172

    Article  PubMed  CAS  Google Scholar 

  25. Picardeau M, Bulach DM, Bouchier C et al (2008) Genome sequence of the saprophyte Leptospira biflexa provides insights into the evolution of Leptospira and the pathogenesis of leptospirosis. PLoS One 3:e1607

    Article  PubMed  Google Scholar 

  26. Power ME, Parker MS, Dietrich WE (2008) Seasonal reassembly of a river food web: floods, droughts, and impacts of fish. Ecol Monogr 78:263–282

    Article  Google Scholar 

  27. Reis RB, Ribeiro GS, Felzemburgh RD et al (2008) Impact of environment and social gradient on leptospira infection in urban slums. PLoS Negl Trop Dis 2:e228

    Article  PubMed  Google Scholar 

  28. Ristow P, Bourhy P, Kerneis S et al (2008) Biofilm formation by saprophytic and pathogenic leptospires. Microbiology 154:1309–1317

    Article  PubMed  CAS  Google Scholar 

  29. Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor, New York

    Google Scholar 

  30. Sauer K, Cullen MC, Rickard AH et al (2004) Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J Bacteriol 186:7312–7326

    Article  PubMed  CAS  Google Scholar 

  31. Smith DJ, Self HR (1955) Observations on the survival of Leptospira australis A in soil and water. J Hyg (Lond) 53:436–444

    Article  CAS  Google Scholar 

  32. Smith CE, Turner LH (1961) The effect of pH on the survival of leptospires in water. Bull World Health Organ 24:35–43

    PubMed  CAS  Google Scholar 

  33. Svircev Z, Markovic SB, Vukadinov J et al (2009) Leptospirosis distribution related to freshwater habitats in the Vojvodina region (Republic of Serbia). Sci China C Life Sci 52:965–971

    Article  PubMed  Google Scholar 

  34. Trueba G, Zapata S, Madrid K et al (2004) Cell aggregation: a mechanism of pathogenic Leptospira to survive in fresh water. Int Microbiol 7:35–40

    PubMed  Google Scholar 

  35. Victoria B, Ahmed A, Zuerner RL et al (2008) Conservation of the S10-spc-alpha locus within otherwise highly plastic genomes provides phylogenetic insight into the genus Leptospira. PLoS One 3:e2752

    Article  PubMed  Google Scholar 

  36. Wang Q, Garrity GM, Tiedje JM et al (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronica A. Barragan.

Additional information

Work performed in: Quito-Ecuador (South America).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barragan, V.A., Mejia, M.E., Trávez, A. et al. Interactions of Leptospira with Environmental Bacteria from Surface Water. Curr Microbiol 62, 1802–1806 (2011). https://doi.org/10.1007/s00284-011-9931-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-011-9931-3

Keywords

Navigation