Skip to main content
Log in

Environmental Burkholderia cepacia Strain Cs5 Acting by Two Analogous Alkyl-Quinolones and a Didecyl-Phthalate Against a Broad Spectrum of Phytopathogens Fungi

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

An environmental Burkholderia cepacia strain named Cs5 was isolated and identified first using API biochemical identification system and then with 16S rDNA and recA sequence homology search. This bacterium exhibited a broad spectrum of fungicidal activities against Alternaria alternata, Aspergillus niger, Fusarium culmorum, F. graminearum, F. oxysporum and Rhizoctonia solani. In the liquid conditions, the MIC of A. niger and R. solani were reached with, respectively, 1.25–2% of the Cs5 liquid culture supernatant. However, in the solid conditions, the same inhibition was caused in the presence of 3% of the Cs5 supernatant. The exhibition of these two fungi at low concentrations of supernatant Cs5 caused various morphological changes of their mycelia which were observed by confocal microscopy. Three antifungal compounds, named Cs5-255, Cs5-257 and Cs5-446, were purified from the Cs5 culture. The structural analysis of these molecules showed that Cs5-255 and Cs5-257 are analogous and belonged to the alkyl-quinolone family, while Cs5-446 was a didecyl-phthalate, isolated for the first time from a bacterium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Coenye T, Vandamme P (2003) Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol 5:719–729

    Article  PubMed  CAS  Google Scholar 

  2. Compant S, Nowak J, Coenye T, Clément C, Ait Barka E (2008) Diversity and occurrence of Burkholderia spp. in the natural environment. FEMS Microbiol Rev 32:607–626

    Article  PubMed  CAS  Google Scholar 

  3. Diggle SP, Cornelis P, Williams P, Camara M (2006) 4-Quinolone signalling in Pseudomonas aeruginosa: old molecules, new perspectives. Int J Med Microbiol 296:83–91

    Article  PubMed  CAS  Google Scholar 

  4. Fravel DR (2005) Commercialization and implantation of biocontrol. Annu Rev Phytopathol 43:337–359

    Article  PubMed  CAS  Google Scholar 

  5. Gerdardson B (2002) Biological substitutes for pesticides. Trends Biotechnol 20:338–343

    Article  Google Scholar 

  6. Hoang VLT, Li Y, Kim SK (2008) Cathepsin B inhibitory activities of phthalates isolated from a marine Pseudomonas strain. Bioorg Med Chem Lett 18:2083–2088

    Article  PubMed  CAS  Google Scholar 

  7. Johansson PM, Johnsson L, Gerhardson B (2003) Suppression of wheat-seedling diseases caused by Fusarium culmorum and Microdochium nivale using bacterial seed treatment. Plant Pathol 52:219–227

    Article  Google Scholar 

  8. Kavitha A, Prabhakar P, Narasimhulu M, Vijayalakshmi M, Venkateswarlu Y, Rao KV, Raju VB (2010) Isolation, characterization and biological evaluation of bioactive metabolites from Nocardia levis MK-VL_113. Microbiol Res 165:199–210

    Article  PubMed  CAS  Google Scholar 

  9. Kilani-Feki O, Khiari O, Culioli G, Ortalo-Magné A, Zouari N, Blache Y, Jaoua S (2010) Antifungal activities of an endophytic Pseudomonas fluorescens strain Pf1TZ harbouring genes from pyoluteorin and phenazine clusters. Biotechnol Lett 32:1279–1285

    Article  PubMed  CAS  Google Scholar 

  10. Kim YJ, Jonas J (1998) Dynamics of complex phthalate liquids. 2. Structural effects of side chains. J Phys Chem 102:2778–2784

    CAS  Google Scholar 

  11. King EB, Parke JL (1993) Biocontrol of Aphanomyces root rot and Pythium damping-off by Pseudomonas cepacia AMMD on four pea cultivars. Plant Dis 77:1185–1188

    Article  Google Scholar 

  12. Lee KH, Kim JH, Lim DS, Kim CH (2000) Anti-leukaemic and anti-mutagenic effects of di(2-ethylhexyl)phthalate isolated from Aloe vera Linne. J Pharm Pharmacol 52:593–598

    Article  PubMed  CAS  Google Scholar 

  13. Mahmoud AG, Louis BR (1999) Antifungal agents: mode of action, mechanism of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev 12:501–517

    Google Scholar 

  14. Moon SS, Kang PM, Park KS, Kim CH (1996) Plant growth promoting and fungicidal 4-quinolones from Pseudomonas cepacia. Phytochemistry 42:365–368

    Article  CAS  Google Scholar 

  15. Oliva A, Meepagala KM, Wedge DE, Harries D, Hale AL, Aliotta G, Duke SO (2003) Natural fungicides from Ruta graveolens L. leaves, including a new quinolone alkaloid. J Agric Food Chem 51:890–896

    Article  PubMed  CAS  Google Scholar 

  16. Ortíz-Castro R, Contreras-Cornejo HA, Macías-Rodríguez L, López-Bucio J (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4:701–712

    Article  PubMed  Google Scholar 

  17. Quan CS, Zheng W, Liu Q, Ohta Y, Fan SD (2006) Isolation and characterization of a novel Burkholderia cepacia with strong antifungal activity against Rhizoctonia solani. Appl Microbiol Biotechnol 72:1276–1284

    Article  PubMed  CAS  Google Scholar 

  18. Sultan MZ, Park K, Lee SY, Park JK, Varughese T, Moon SS (2008) Novel oxidized derivatives of antifungal pyrrolnitrin from the bacterium Burkholderia cepacia K87. J Antibiot 61:420–425

    Article  PubMed  CAS  Google Scholar 

  19. Sultan MZ, Moon SS, Park K (2010) Natural phthalate derivatives from the bacterium Burkholderia cepacia K87. J Sci Res 2:191–195

    CAS  Google Scholar 

  20. Vial L, Groleau MC, Dekimpe V, Déziel E (2007) Burkholderia diversity and versatility: an inventory of the extracellular products. J Microbiol Biotechnol 17:1407–1429

    PubMed  CAS  Google Scholar 

  21. Vial L, Lépine F, Milot S, Groleau MC, Dekimpe V, Woods DE, Déziel E (2008) Burkholderia pseudomallei, B. thailandensis, and B. ambifaria produce 4-hydroxy-2-alkylquinoline analogues with a methyl group at the 3 position that is required for quorum-sensing regulation. J Bacteriol 190:5339–5352

    Article  PubMed  CAS  Google Scholar 

  22. Zhang Y, Mu J, Gu X, Zhao C, Wang X, Xie AZ (2009) Marine sulfate-reducing bacterium producing multiple antibiotics: biological and chemical investigation. Mar Drugs 7:341–354

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by « Ministère de l’Enseignement Supérieur et de la Recherche Scientifique » . We also thank Pr. Jamil Jaoua, Head of the English Unit at the Sfax faculty of Science and Dr. Moez Feki, Associate Professor, for proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Jaoua.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 103 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kilani-Feki, O., Culioli, G., Ortalo-Magné, A. et al. Environmental Burkholderia cepacia Strain Cs5 Acting by Two Analogous Alkyl-Quinolones and a Didecyl-Phthalate Against a Broad Spectrum of Phytopathogens Fungi. Curr Microbiol 62, 1490–1495 (2011). https://doi.org/10.1007/s00284-011-9892-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-011-9892-6

Keywords

Navigation