Skip to main content
Log in

Assessment of the Role of Chemotaxis and Biofilm Formation as Requirements for Colonization of Roots and Seeds of Soybean Plants by Bacillus amyloliquefaciens BNM339

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

This article correlates colonization with parameters, such as chemotaxis, biofilm formation, and bacterial growth, that are believed to be connected. We show here, by using two varieties of soybean plants that seeds axenically produced exudates, induced a chemotactic response in Bacillus amyloliquefaciens, whereas root exudates did not, even when the exudates, also collected under axenic conditions, were concentrated up to 200-fold. Root exudates did not support bacterial cell division, whereas seed exudates contain compounds that support active cell division and high cell biomass at stationary phase. Seed exudates of the two soybean varieties also induced biofilm formation. B. amyloliquefaciens colonized both seeds and roots, and plant variety significantly affected bacterial root colonization, whereas it did not affect seed colonization. Colonization of roots in B. amyloliquefaciens occurred despite the lack of chemotaxis and growth stimulation by root exudates. The data presented in this article suggest that soybean seed colonization, but not root colonization, by B. amyloliquefaciens is influenced by chemotaxis, growth, and biofilm formation and that this may be caused by qualitative changes of the composition of root exudates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adler J (1973) A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli. J Gen Microbiol 74:77–91

    PubMed  CAS  Google Scholar 

  2. Ali FS, Loynachan TE (1990) Inhibition of Bradyrhizobium japonicum by diffusates from soybean seed. Soil Biol Biochem 22:973–976

    Article  Google Scholar 

  3. Bacilio-Jiménez M, Aguilar-Flores S, Ventura-Zapata E, Pérez-Campos E, Bouquelet S, Zenteno E (2003) Chemical characterization of root exudates from rice (Oryza sativa) and their effects on the chemotactic response of endophytic bacteria. Plant Soil 249:271–277

    Article  Google Scholar 

  4. Bais HP, Ray F, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319

    Article  PubMed  CAS  Google Scholar 

  5. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants. Annu Rev Plant Biol 57:233–266

    Article  PubMed  CAS  Google Scholar 

  6. Barbour MW, Hattermann DR, Stacey G (1991) Chemotaxis of Bradyrhizobium japonicum to soybean exudates. Appl Environ Microbiol 57:2635–2639

    PubMed  CAS  Google Scholar 

  7. Branda SS, Chu F, Kearns DB, Losick R, Kolter R (2006) A major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol 59:1229–1238

    Article  PubMed  CAS  Google Scholar 

  8. Caetano-Anollés G, Wall LG, De Micheli AT, Macchi EM, Bauer WD, Favelukes G (1988) Role of motility and chemotaxis in efficiency of nodulation by Rhizobium melliloti. Plant Physiol 86:1228–1235

    PubMed  Google Scholar 

  9. Chin-A-Woeng TFC, Bloemberg GV, Mulders IHM, Dekkers LC, Lugtenberg BJJ (2000) Root colonization is essential for biocontrol of tomato foot and root rot by the phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391. Mol Plant Microbe Interact 13:1340–1345

    Article  PubMed  CAS  Google Scholar 

  10. Currier WW, Strobel GA (1976) Chemotaxis of Rhizobium spp. to plant root exudates. Plant Physiol 57:820–823

    PubMed  Google Scholar 

  11. de Weert S, Vermeiren H, Mulders I, Kuiper I, Hendrickx N, Bloemberg GV et al (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant Microbe Interact 15:1173–1180

    Article  PubMed  Google Scholar 

  12. Hamon MA, Lazazzera BA (2001) The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis. Mol Microbiol 42:1199–1209

    Article  PubMed  CAS  Google Scholar 

  13. Hiroyuki F, Masao S, Hidenori O, Yasufumi U, Tadayoshi S, Tatsuhiko M (1998) Chemotactic response to amino acids of fluorescent pseudomonas isolated from spinach roots grown in soils with different salinity levels. Soil Sci Plant Nutr 44:1–7

    Google Scholar 

  14. Kadouri D, Jurkevitch E, Okon Y (2003) Involvement of the reserve material poly-ß-hydroxybutirate in Azospirillum brasilense stress endurance and root colonization. Appl Environ Microbiol 69:3244–3250

    Article  PubMed  CAS  Google Scholar 

  15. Kamilova F, Validov S, Azarova T, Mulders I, Lugtenberg BJJ (2005) Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ Microbiol 7:1809–1817

    Article  PubMed  CAS  Google Scholar 

  16. Kato K, Arima Y (2006) Potential of seed and root exudates of the common bean Phaseolus vulgaris L. for immediate induction of rhizobial chemotaxis and nod genes. Soil Sci Plant Nutr 52:432–437

    Article  CAS  Google Scholar 

  17. Kuzyakov Y, Raskatov A, Kaupenjohann M (2003) Turnover and distribution of root exudates of Zea mays. Plant Soil 254:317–327

    Article  CAS  Google Scholar 

  18. Landa BB, Hervás A, Bettiol W, Jiménez-Díaz RM (1997) Antagonistic activity of bacteria from the chickpea rhizosphere against Fusarium oxysporum f. sp. ciceris. Phytoparasitica 25:305–318

    Google Scholar 

  19. Lorda GS, Balatti AP (1996) Designing media I. Production of high cell concentrations of Rhizobium and Bradyrhizobium. In: Balatti AP, Freire, JRJ (eds) Legume inoculants. Selection and characterization of strains, production, use and management. Editorial Kingraf, Buenos Aires, Argentina, pp 78–93

  20. Lugtenberg BJJ, Dekkers LC (1999) What make Pseudomonas bacteria rhizosphere competent? Environ Microbiol 1:9–13

    Article  PubMed  CAS  Google Scholar 

  21. Lugtenberg BJJ, Kravchenko LV, Simons M (1999) Tomato seed and root exudate sugars: composition, utilization by Pseudomonas biocontrol strains, and role in rhizosphere colonization. Environ Microbiol 1:439–446

    Article  PubMed  CAS  Google Scholar 

  22. Lugtenberg BJJ, Dekkers LC, Bloemberg GV (2002) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490

    Article  Google Scholar 

  23. Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129:1–10

    Article  CAS  Google Scholar 

  24. Molina MA, Ramos JL, Espinosa-Urgel M (2003) Plant-associated biofilms. Rev Environ Sci Biotechnol 2:99–108

    Article  Google Scholar 

  25. Morris CE, Monier JM (2003) The ecological significance of biofilm formation by plant-associated bacteria. Annu Rev Phytopathol 41:429–453

    Article  PubMed  CAS  Google Scholar 

  26. Mozafar A, Duss F, Oertli JJ (1992) Effect of Pseudomonas fluorescens on the root exudates of two tomato mutans differently sensitive to Fe chlorosis. Plant Soil 144:167–176

    Article  CAS  Google Scholar 

  27. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  28. Niu C, Gilbert ES (2004) Colorimetric method for identifying plant essential oil components that affect biofilm formation and structure. Appl Environ Microbiol 70:6951–6956

    Article  PubMed  CAS  Google Scholar 

  29. Ordal G, Goldman D (1975) Chemotaxis away from uncouplers of oxidative phosphorylation in Bacillus subtilis. Science 189:802–805

    Article  PubMed  CAS  Google Scholar 

  30. Ordal G, Katharine G (1977) Chemotaxis toward amino acids by Bacillus subtilis. J Bacteriol 129:151–155

    PubMed  CAS  Google Scholar 

  31. Phillips DA, Tama CF, King MD, Bhuvaneswari TV, Teuber LR (2004) Microbial products trigger amino acid exudation from plant roots. Plant Physiol 136:2887–2894

    Article  PubMed  CAS  Google Scholar 

  32. Schippers B, Baker AW, Bakker PAHM (1987) Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu Rev Phytopathol 25:339–358

    Article  Google Scholar 

  33. Sharma M, Anand SK (2002) Swarming: a coordinated bacterial activity. Current Sci 83:707–715

    CAS  Google Scholar 

  34. Somasegaran P, Hoben HJ (1994) Handbook for rhizobia. Springer-Verlag, New York, NY, p 337–341

    Google Scholar 

  35. Stanley NR, Britton RA, Grossman AD, Lazazzera BA (2003) Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays. J Bacteriol 185:1951–1957

    Article  PubMed  CAS  Google Scholar 

  36. Thomashow LS (1996) Biological control of plant root pathogens. Curr Opin Biotechnol 7:343–347

    Article  PubMed  CAS  Google Scholar 

  37. Vande Broek A, Lambrecht M, Vanderleyden J (1998) Bacterial chemotactic motility is important for the initiation of wheat root colonization by Azospirillum brasilense. Microbiology 144:2599–2606

    Article  PubMed  CAS  Google Scholar 

  38. Zheng XY, Sinclair JB (1996) Chemotactic response of Bacillus megaterium strain B153-2-2 to soybean root and seed exudates. Physiol Mol Plant Pathol 48:21–35

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support received from the Agencia Nacional de Promoción Científica y Tecnológica (Grant No. PICT 01-10892); the Centro Argentino-Brasileño de Biotecnología (Grant No. 13AR-07BR); and the Consejo Nacional de Investigaciones Científicas y Técnicas (Grant No. PIP 5003). We thank F. del Norte for kindly supplying the seeds and the phenotypic characteristics of the soybean varieties used here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Yaryura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yaryura, P.M., León, M., Correa, O.S. et al. Assessment of the Role of Chemotaxis and Biofilm Formation as Requirements for Colonization of Roots and Seeds of Soybean Plants by Bacillus amyloliquefaciens BNM339. Curr Microbiol 56, 625–632 (2008). https://doi.org/10.1007/s00284-008-9137-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-008-9137-5

Keywords

Navigation