Skip to main content
Log in

Reconstituted Proteolipid Vesicles Prepared from Mycoplasma fermentans Membranes Are Able to Bind and Fuse with Molt-3 Cells

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

We describe and characterize reconstituted proteolipid vesicles (rPLV) prepared from solubilized Mycoplasma fermentans membranes and studied their binding to and fusion with host Molt-3 cells. The rPLV were prepared following membrane solubilization by Triton X-100 and detergent removal by SM-2 resin beads. The vesicles thus obtained had a rather uniform diameter of about 1 μm and were sealed as monitored by measuring in an assay that measures the quenching by sodium dithionite of a hydrophobic fluorescent probe incorporated into the rPLV membrane. The rPLV adhered to Molt-3 cells and, based on measurements of lipid mixing, fused with the host cells at a similar rate and to about the same extent as intact M. fermentans. Preliminary experiments showed that a chimeric protein, GnRH-PE66, could be encapsulated within these rPLV, opening the way to develop a system for the transfer of high-molecular weight soluble molecules, encapsulated in the rPLV, to target eukaryotic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Literature Cited

  1. Rottem S (2003) Interaction of mycoplasmas with host cells. Physiol Rev 83:417–432

    PubMed  CAS  Google Scholar 

  2. Stadtlander CT, Watson HL, Simecka JW, et al. (1993) Cytopathogenicity of Mycoplasma fermentans (including strain incognitus). Clin Infect Dis 17(Suppl 1):S289–301

    PubMed  Google Scholar 

  3. Dimitrov DS, Franzoso G, Salman M, et al. (1993) Mycoplasma fermentans (incognitus strain) cells are able to fuse with T lymphocytes. Clin Infect Dis 17 Suppl 1:S305–308

    PubMed  Google Scholar 

  4. Franzoso G, Dimitrov DS, Blumenthal R, et al. (1992) Fusion of Mycoplasma fermentans strain incognitus with T-lymphocytes. FEBS Lett 303:251–254

    Article  PubMed  CAS  Google Scholar 

  5. Rottem S (2002) Choline-containing lipids in mycoplasmas. Microbes Infect 4:963–968

    Article  PubMed  CAS  Google Scholar 

  6. Rottem S, Naot Y (1998) Subversion and exploitation of host cells by mycoplasmas. Trends Microbiol 6:436–440

    Article  PubMed  CAS  Google Scholar 

  7. Shibata K, Noda M, Sawa Y, et al. (1994) Acid phosphatase purified from Mycoplasma fermentans has protein tyrosine phosphatase-like activity. Infect Immun 62:313–315

    PubMed  CAS  Google Scholar 

  8. Paddenberg R, Weber A, Wulf S, et al. (1998) Mycoplasma nucleases able to induce internucleosomal DNA degredation in cultured cells possess many characteristics of eukaryotic apoptotic nucleases. Cell Death Differ 5:517–528

    Article  PubMed  CAS  Google Scholar 

  9. Paddenberg R, Wulf S, Weber A, et al. (1996) Internucleosomal DNA fragmentation in cultured cells under conditions reported to induce apoptosis may be caused by mycoplasma endonucleases. Eur J Cell Biol 71:105–119

    PubMed  CAS  Google Scholar 

  10. Razin S, Rottem S (1976) Techniques for the manipulation of mycoplasma membranes. In: Maddy A (eds). Biochemical analysis of membranes, vol. I. London: Chapman and Hall, pp 3–26

    Google Scholar 

  11. Yavlovich A, Higazi AA-R, Rottem S (2001) Plasminogen binding and activation by Mycoplasma fermentans. Infect Immun 69:1977–1982

    Article  PubMed  CAS  Google Scholar 

  12. Pomorski T, Herrmann A, Zimmermann B, et al. (1995) An improved assay for measuring the transverse redistribution of fluorescent phospholipids in plasma membranes. Chem Phys Lipids 77:139–146

    Article  PubMed  CAS  Google Scholar 

  13. Yavlovich A, Katzenell A, Tarshis M, et al. (2004) Mycoplasma fermentans binds to and invades HeLa cells: involvement of plasminogen and urokinase. Infect Immun 72:5004–5011

    Article  PubMed  CAS  Google Scholar 

  14. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  15. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  16. Cole RM (1983) Transmission electron microscopy: Basic techniques. In: Razin S, Tully JG (eds). Methods in mycoplasmology, vol. I. New York: Academic Press, Inc. pp 43–50

    Google Scholar 

  17. Ruf H, Georgalis Y, Grell E (1989) Dynamic laser light scattering to determine size distributions of vesicles. Methods Enzymol 172:364–390

    PubMed  CAS  Google Scholar 

  18. Holloway PW (1973) A simple procedure for removal of Triton X-100 from protein samples. Anal Biochem 53:304–308

    Article  PubMed  CAS  Google Scholar 

  19. McIntyre JC, Sleight RG (1991) Fluorescence assay for phospholipid membrane asymmetry. Biochemistry 30:11819–11827

    Article  PubMed  CAS  Google Scholar 

  20. Armstrong VT, Brzustowicz MR, Wassall SR, et al. (2003) Rapid flip-flop in polyunsaturated (docosahexaenoate) phospholipid membranes. Arch Biochem Biophys 414:74–82

    Article  PubMed  CAS  Google Scholar 

  21. Nechushtan A, Yarkoni S, Marianovsky I, et al. (1997) Adenocarcinoma cells are targeted by the new GnRH-PE66 chimeric toxin through specific gonadotropin-releasing hormone binding sites. J Biol Chem 272:11597–11603

    Article  PubMed  CAS  Google Scholar 

  22. Leigh SA, Wise KS (2002) Identification and functional mapping of the Mycoplasma fermentans P29 adhesin. Infect Immun 70:4925–4935

    Article  PubMed  CAS  Google Scholar 

  23. Rottem S, Tarshis M (1995) Membrane fusion. In: Razin S, Tully JG (eds). Molecular and diagnostic procedures in mycoplasmology, vol. I. San Diego: Academic Press, Inc. pp 243–249

    Google Scholar 

  24. Burger KNJ, Verkleij AJ (1990) Membrane fusion. Experientia 46:631–644

    Article  PubMed  CAS  Google Scholar 

  25. Busquets MA, Alsina MA, Haro I (2003) Peptides and liposomes: From biophysical to immunogenic studies. Curr Drug Targets 4:633–642

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank H. Lorberboum-Galski for providing the chimeric protein GnRH-PE66.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hagai Rechnitzer or Shlomo Rottem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rechnitzer, H., Rottem, S. Reconstituted Proteolipid Vesicles Prepared from Mycoplasma fermentans Membranes Are Able to Bind and Fuse with Molt-3 Cells. Curr Microbiol 53, 293–297 (2006). https://doi.org/10.1007/s00284-006-0007-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-006-0007-8

Keywords

Navigation