Skip to main content

Advertisement

Log in

Local anesthetics and immunotherapy: a novel combination to fight cancer

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Intratumoral injection of oncolytic agents such as modified herpes simplex virus T-VEC or local administration of non-viral oncolytic therapies (such as radiofrequency, chemoembolization, cryoablation, or radiotherapy) can activate an anticancer immune response and hence trigger abscopal effects reducing secondary lesions. Preliminary data suggested that oncolytic treatments modulate tumor-infiltrating immune effectors and can be advantageously combined with the immune checkpoint inhibitors. Recent findings indicate that local anesthetics, which are usually used in the clinics to control surgical pain, also possess antineoplastic effects mimicking oncolytic treatments if they are injected into malignant lesions. Moreover, the association of local anesthetics with systemic immune checkpoint inhibition significantly improved overall survival in several preclinical tumor models. This may be explained by direct cytotoxic activity of local anesthetics and additional immune-related abscopal effects. We also summarize the molecular and cellular mechanisms by which the combination of local anesthetics and immunotherapy improves tumor control by the immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P et al (2011) Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334(6062):1573–1577. https://doi.org/10.1126/science.1208347

    Article  CAS  PubMed  Google Scholar 

  2. Kroemer G, Galluzzi L, Kepp O, Zitvogel L (2013) Immunogenic cell death in cancer therapy. Annu Rev Immunol 31:51–72. https://doi.org/10.1146/annurev-immunol-032712-100008

    Article  CAS  PubMed  Google Scholar 

  3. Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A et al (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13(9):1050–1059. https://doi.org/10.1038/nm1622

    Article  CAS  PubMed  Google Scholar 

  4. Martins I, Wang Y, Michaud M, Ma Y, Sukkurwala AQ, Shen S et al (2014) Molecular mechanisms of ATP secretion during immunogenic cell death. Cell Death Differ 21(1):79–91. https://doi.org/10.1038/cdd.2013.75

    Article  CAS  PubMed  Google Scholar 

  5. Ghiringhelli F, Apetoh L, Tesniere A, Aymeric L, Ma Y, Ortiz C et al (2009) Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med 15(10):1170–1178. https://doi.org/10.1038/nm.2028

    Article  CAS  PubMed  Google Scholar 

  6. Panaretakis T, Kepp O, Brockmeier U, Tesniere A, Bjorklund AC, Chapman DC et al (2009) Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J 28(5):578–590. https://doi.org/10.1038/emboj.2009.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL et al (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13(1):54–61. https://doi.org/10.1038/nm1523

    Article  CAS  PubMed  Google Scholar 

  8. Bezu L, Sauvat A, Humeau J, Gomes-da-Silva LC, Iribarren K, Forveille S et al (2018) eIF2alpha phosphorylation is pathognomonic for immunogenic cell death. Cell Death Differ 25(8):1375–1393. https://doi.org/10.1038/s41418-017-0044-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Korbelik M, Zhang W, Merchant S (2011) Involvement of damage-associated molecular patterns in tumor response to photodynamic therapy: surface expression of calreticulin and high-mobility group box-1 release. Cancer immunology, immunotherapy : CII 60(10):1431–1437. https://doi.org/10.1007/s00262-011-1047-x

    Article  CAS  PubMed  Google Scholar 

  10. Garg AD, Krysko DV, Vandenabeele P, Agostinis P (2012) Hypericin-based photodynamic therapy induces surface exposure of damage-associated molecular patterns like HSP70 and calreticulin. Cancer Immunol Immunother : Cii 61(2):215–221. https://doi.org/10.1007/s00262-011-1184-2

    Article  CAS  PubMed  Google Scholar 

  11. Panaretakis T, Joza N, Modjtahedi N, Tesniere A, Vitale I, Durchschlag M et al (2008) The co-translocation of ERp57 and calreticulin determines the immunogenicity of cell death. Cell Death Differ 15(9):1499–1509. https://doi.org/10.1038/cdd.2008.67

    Article  CAS  PubMed  Google Scholar 

  12. Reschke R, Gajewski TF (2022) CXCL9 and CXCL10 bring the heat to tumors. Science immunology 7(73):1–3. https://doi.org/10.1126/sciimmunol.abq6509

    Article  CAS  Google Scholar 

  13. Fucikova J, Becht E, Iribarren K, Goc J, Remark R, Damotte D et al (2016) Calreticulin expression in human non-small cell lung cancers correlates with increased accumulation of antitumor immune cells and favorable prognosis. Can Res 76(7):1746–1756. https://doi.org/10.1158/0008-5472.CAN-15-1142

    Article  CAS  Google Scholar 

  14. Kaufman HL, Kohlhapp FJ, Zloza A (2015) Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov 14(9):642–662. https://doi.org/10.1038/nrd4663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chesney J, Puzanov I, Collichio F, Singh P, Milhem MM, Glaspy J et al (2018) Randomized, open-label phase II study evaluating the efficacy and safety of talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone in patients with advanced, unresectable melanoma. J Clin Oncol : Off J Am Soc Clin Oncol 36(17):1658–1667. https://doi.org/10.1200/JCO.2017.73.7379

    Article  CAS  Google Scholar 

  16. Yu Z, Geng J, Zhang M, Zhou Y, Fan Q, Chen J (2014) Treatment of osteosarcoma with microwave thermal ablation to induce immunogenic cell death. Oncotarget 5(15):6526–6539. https://doi.org/10.18632/oncotarget.2310

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tselikas L, Dardenne A, de Baere T, Faron M, Ammari S, Farhane S et al (2022) Feasibility, safety and efficacy of human intra-tumoral immuno-therapy. Gustave Roussy’s initial experience with its first 100 patients. Eur J Cancer 172:1–12. https://doi.org/10.1016/j.ejca.2022.05.024

    Article  PubMed  Google Scholar 

  18. Formenti SC, Rudqvist NP, Golden E, Cooper B, Wennerberg E, Lhuillier C et al (2018) Radiotherapy induces responses of lung cancer to CTLA-4 blockade. Nat Med 24(12):1845–1851. https://doi.org/10.1038/s41591-018-0232-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ribas A, Dummer R, Puzanov I, VanderWalde A, Andtbacka RHI, Michielin O et al (2017) Oncolytic virotherapy promotes intratumoral t cell infiltration and improves Anti-PD-1 immunotherapy. Cell 170(6):1109-19e10. https://doi.org/10.1016/j.cell.2017.08.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shi L, Chen L, Wu C, Zhu Y, Xu B, Zheng X et al (2016) PD-1 Blockade boosts radiofrequency ablation-elicited adaptive immune responses against tumor. Clin Cancer Res : Off J Am Assoc Cancer Res 22(5):1173–1184. https://doi.org/10.1158/1078-0432.CCR-15-1352

    Article  CAS  Google Scholar 

  21. Kleinovink JW, Fransen MF, Lowik CW, Ossendorp F (2017) Photodynamic-immune checkpoint therapy eradicates local and distant tumors by CD8(+) T cells. Cancer Immunol Res 5(10):832–838. https://doi.org/10.1158/2326-6066.CIR-17-0055

    Article  CAS  PubMed  Google Scholar 

  22. O’Shaughnessy MJ, Murray KS, La Rosa SP, Budhu S, Merghoub T, Somma A et al (2018) Systemic antitumor immunity by PD-1/PD-L1 inhibition is potentiated by vascular-targeted photodynamic therapy of primary tumors. Clin Cancer Res : Off J Am Assoc Cancer Res 24(3):592–599. https://doi.org/10.1158/1078-0432.CCR-17-0186

    Article  CAS  Google Scholar 

  23. Waitz R, Solomon SB, Petre EN, Trumble AE, Fasso M, Norton L et al (2012) Potent induction of tumor immunity by combining tumor cryoablation with anti-CTLA-4 therapy. Can Res 72(2):430–439. https://doi.org/10.1158/0008-5472.CAN-11-1782

    Article  CAS  Google Scholar 

  24. Mozzillo N, Simeone E, Benedetto L, Curvietto M, Giannarelli D, Gentilcore G et al (2015) Assessing a novel immuno-oncology-based combination therapy: ipilimumab plus electrochemotherapy. Oncoimmunology 4(6):e1008842. https://doi.org/10.1080/2162402X.2015.1008842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Taylor A, McLeod G (2020) Basic pharmacology of local anaesthetics. BJA education 20(2):34–41. https://doi.org/10.1016/j.bjae.2019.10.002

    Article  CAS  PubMed  Google Scholar 

  26. Heavner JE (2007) Local anesthetics. Curr Opin Anaesthesiol 20(4):336–342. https://doi.org/10.1097/ACO.0b013e3281c10a08

    Article  PubMed  Google Scholar 

  27. Bourne E, Wright C, Royse C (2010) A review of local anesthetic cardiotoxicity and treatment with lipid emulsion. Local Reg Anesth 3:11–19. https://doi.org/10.2147/lra.s8814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Verlinde M, Hollmann MW, Stevens MF, Hermanns H, Werdehausen R, Lirk P (2016) Local anesthetic-induced neurotoxicity. Int J Mol Sci 17(3):339. https://doi.org/10.3390/ijms17030339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Perez-Castro R, Patel S, Garavito-Aguilar ZV, Rosenberg A, Recio-Pinto E, Zhang J et al (2009) Cytotoxicity of local anesthetics in human neuronal cells. Anesth Analg 108(3):997–1007. https://doi.org/10.1213/ane.0b013e31819385e1

    Article  CAS  PubMed  Google Scholar 

  30. Aburawi EH, Souid AK (2014) Inhibition of murine cardiomyocyte respiration by amine local anesthetics. Eur J Drug Metab Pharmacokinet 39(4):293–299. https://doi.org/10.1007/s13318-013-0159-4

    Article  CAS  PubMed  Google Scholar 

  31. Biki B, Mascha E, Moriarty DC, Fitzpatrick JM, Sessler DI, Buggy DJ (2008) Anesthetic technique for radical prostatectomy surgery affects cancer recurrence: a retrospective analysis. Anesthesiology 109(2):180–187. https://doi.org/10.1097/ALN.0b013e31817f5b73

    Article  PubMed  Google Scholar 

  32. Exadaktylos AK, Buggy DJ, Moriarty DC, Mascha E, Sessler DI (2006) Can anesthetic technique for primary breast cancer surgery affect recurrence or metastasis? Anesthesiology 105(4):660–664. https://doi.org/10.1097/00000542-200610000-00008

    Article  PubMed  Google Scholar 

  33. Weng M, Chen W, Hou W, Li L, Ding M, Miao C (2016) The effect of neuraxial anesthesia on cancer recurrence and survival after cancer surgery: an updated meta-analysis. Oncotarget 7(12):15262–15273. https://doi.org/10.18632/oncotarget.7683

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sun Y, Li T, Gan TJ (2015) The effects of perioperative regional anesthesia and analgesia on cancer recurrence and survival after oncology surgery: a systematic review and meta-analysis. Reg Anesth Pain Med 40(5):589–598. https://doi.org/10.1097/AAP.0000000000000273

    Article  CAS  PubMed  Google Scholar 

  35. Chen WK, Miao CH (2013) The effect of anesthetic technique on survival in human cancers: a meta-analysis of retrospective and prospective studies. PLoS ONE 8(2):e56540. https://doi.org/10.1371/journal.pone.0056540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schlagenhauff B, Ellwanger U, Breuninger H, Stroebel W, Rassner G, Garbe C (2000) Prognostic impact of the type of anaesthesia used during the excision of primary cutaneous melanoma. Melanoma Res 10(2):165–169

    Article  CAS  PubMed  Google Scholar 

  37. de Oliveira GS, Ahmad S Jr, Schink JC, Singh DK, Fitzgerald PC, McCarthy RJ (2011) Intraoperative neuraxial anesthesia but not postoperative neuraxial analgesia is associated with increased relapse-free survival in ovarian cancer patients after primary cytoreductive surgery. Reg Anesth Pain Med 36(3):271–7

    Article  PubMed  Google Scholar 

  38. Gupta A, Bjornsson A, Fredriksson M, Hallbook O, Eintrei C (2011) Reduction in mortality after epidural anaesthesia and analgesia in patients undergoing rectal but not colonic cancer surgery: a retrospective analysis of data from 655 patients in central Sweden. Br J Anaesth 107(2):164–170. https://doi.org/10.1093/bja/aer100

    Article  CAS  PubMed  Google Scholar 

  39. Lin L, Liu C, Tan H, Ouyang H, Zhang Y, Zeng W (2011) Anaesthetic technique may affect prognosis for ovarian serous adenocarcinoma: a retrospective analysis. Br J Anaesth 106(6):814–822. https://doi.org/10.1093/bja/aer055

    Article  CAS  PubMed  Google Scholar 

  40. Li T, Chen L, Zhao H, Wu L, Masters J, Han C et al (2019) Both bupivacaine and levobupivacaine inhibit colon cancer cell growth but not melanoma cells in vitro. J Anesth 33(1):17–25. https://doi.org/10.1007/s00540-018-2577-6

    Article  PubMed  Google Scholar 

  41. Bezu L, Wu Chuang A, Sauvat A, Humeau J, Xie W, Cerrato G et al (2022) Local anesthetics elicit immune-dependent anticancer effects. J Immunother Cancer 10(4):1–17. https://doi.org/10.1136/jitc-2021-004151

    Article  Google Scholar 

  42. Zhang L, Hu R, Cheng Y, Wu X, Xi S, Sun Y et al (2017) Lidocaine inhibits the proliferation of lung cancer by regulating the expression of GOLT1A. Cell proliferation 50(5):1–8. https://doi.org/10.1111/cpr.12364

    Article  CAS  Google Scholar 

  43. Li C, Gao S, Li X, Li C, Ma L (2018) Procaine inhibits the proliferation and migration of colon cancer cells through inactivation of the ERK/MAPK/FAK pathways by regulation of RhoA. Oncol Res 26(2):209–217. https://doi.org/10.3727/096504017X14944585873622

    Article  PubMed  PubMed Central  Google Scholar 

  44. D’Agostino G, Saporito A, Cecchinato V, Silvestri Y, Borgeat A, Anselmi L et al (2018) Lidocaine inhibits cytoskeletal remodelling and human breast cancer cell migration. Br J Anaesth 121(4):962–968. https://doi.org/10.1016/j.bja.2018.07.015

    Article  CAS  PubMed  Google Scholar 

  45. Sui H, Lou A, Li Z, Yang J. Lidocaine inhibits growth, migration and invasion of gastric carcinoma cells by up-regulation of miR-145.BMC cancer. 2019;19(1):233.doi: https://doi.org/10.1186/s12885-019-5431-9

  46. Qin A, Liu Q, Wang J (2020) Ropivacaine inhibits proliferation, invasion, migration and promotes apoptosis of papillary thyroid cancer cells via regulating ITGA2 expression. Drug Dev Res 81(6):700–707. https://doi.org/10.1002/ddr.21671

    Article  CAS  PubMed  Google Scholar 

  47. Villar-Garea A, Fraga MF, Espada J, Esteller M (2003) Procaine is a DNA-demethylating agent with growth-inhibitory effects in human cancer cells. Cancer Res 63(16):4984–4989

    CAS  PubMed  Google Scholar 

  48. Li YC, Wang Y, Li DD, Zhang Y, Zhao TC, Li CF (2018) Procaine is a specific DNA methylation inhibitor with anti-tumor effect for human gastric cancer. J Cell Biochem 119(2):2440–2449. https://doi.org/10.1002/jcb.26407

    Article  CAS  PubMed  Google Scholar 

  49. Tada M, Imazeki F, Fukai K, Sakamoto A, Arai M, Mikata R et al (2007) Procaine inhibits the proliferation and DNA methylation in human hepatoma cells. Hep Intl 1(3):355–364. https://doi.org/10.1007/s12072-007-9014-5

    Article  Google Scholar 

  50. Lirk P, Hollmann MW, Fleischer M, Weber NC, Fiegl H (2014) Lidocaine and ropivacaine, but not bupivacaine, demethylate deoxyribonucleic acid in breast cancer cells in vitro. Br J Anaesth 113(Suppl 1):i32–i38. https://doi.org/10.1093/bja/aeu201

    Article  CAS  PubMed  Google Scholar 

  51. Chen D, Yan Y, Xie J, Pan J, Chen Y, Li Q et al (2020) Amide-type local anesthetics may suppress tumor cell proliferation and sensitize human hepatocellular carcinoma cells to cisplatin via upregulation of RASSF1A expression and demethylation. J Cancer 11(24):7312–7319. https://doi.org/10.7150/jca.46630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lirk P, Berger R, Hollmann MW, Fiegl H (2012) Lidocaine time- and dose-dependently demethylates deoxyribonucleic acid in breast cancer cell lines in vitro. Br J Anaesth 109(2):200–207. https://doi.org/10.1093/bja/aes128

    Article  CAS  PubMed  Google Scholar 

  53. Xia W, Wang L, Yu D, Mu X, Zhou X (2019) Lidocaine inhibits the progression of retinoblastoma in vitro and in vivo by modulating the miR520a3p/EGFR axis. Mol Med Rep 20(2):1333–1342. https://doi.org/10.3892/mmr.2019.10363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ying B, Huang H, Li H, Song M, Wu S, Ying H (2017) Procaine inhibits proliferation and migration and promotes cell apoptosis in osteosarcoma cells by upregulation of MicroRNA-133b. Oncol Res 25(9):1463–70. https://doi.org/10.3727/096504017X14878518291077

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yin D, Liu L, Shi Z, Zhang L, Yang Y (2020) Ropivacaine inhibits cell proliferation, migration and invasion, whereas induces oxidative stress and cell apoptosis by circSCAF11/miR-145-5p axis in glioma. Cancer management and research 12:11145–11155. https://doi.org/10.2147/CMAR.S274975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang H, Lin J, Hu T, Ren Z, Wang W, He Q (2019) Effect of miR-132 on bupivacaine-induced neurotoxicity in human neuroblastoma cell line. J Pharmacol Sci 139(3):186–192. https://doi.org/10.1016/j.jphs.2019.01.014

    Article  CAS  PubMed  Google Scholar 

  57. Sun H, Sun Y (2019) Lidocaine inhibits proliferation and metastasis of lung cancer cell via regulation of miR-539/EGFR axis. Artif cells nanomed biotechnol 47(1):2866–2874. https://doi.org/10.1080/21691401.2019.1636807

    Article  CAS  PubMed  Google Scholar 

  58. Zhang N, Xing X, Gu F, Zhou G, Liu X, Li B (2020) Ropivacaine inhibits the growth, migration and invasion of gastric cancer through attenuation of WEE1 and P13K/AKT signaling via miR-520a-3p. OncoTargets and therapy 13:5309–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Arita K, Utsumi T, Kato A, Kanno T, Kobuchi H, Inoue B et al (2000) Mechanism of dibucaine-induced apoptosis in promyelocytic leukemia cells (HL-60). Biochem Pharmacol 60(7):905–915. https://doi.org/10.1016/s0006-2952(00)00406-8

    Article  CAS  PubMed  Google Scholar 

  60. Tsuchiya H, Mizogami M, Ueno T, Shigemi K (2012) Cardiotoxic local anesthetics increasingly interact with biomimetic membranes under ischemia-like acidic conditions. Biol Pharm Bull 35(6):988–992. https://doi.org/10.1248/bpb.35.988

    Article  CAS  PubMed  Google Scholar 

  61. Johnson ME, Uhl CB, Spittler KH, Wang H, Gores GJ (2004) Mitochondrial injury and caspase activation by the local anesthetic lidocaine. Anesthesiology 101(5):1184–1194. https://doi.org/10.1097/00000542-200411000-00019

    Article  CAS  PubMed  Google Scholar 

  62. Dan J, Gong X, Li D, Zhu G, Wang L, Li F (2018) Inhibition of gastric cancer by local anesthetic bupivacaine through multiple mechanisms independent of sodium channel blockade. Biomed Pharmacotherapy = Biomed Pharmacotherapie 103:823–8. https://doi.org/10.1016/j.biopha.2018.04.106

    Article  CAS  Google Scholar 

  63. Lu J, Xu SY, Zhang QG, Xu R, Lei HY (2011) Bupivacaine induces apoptosis via mitochondria and p38 MAPK dependent pathways. Eur J Pharmacol 657(1–3):51–58. https://doi.org/10.1016/j.ejphar.2011.01.055

    Article  CAS  PubMed  Google Scholar 

  64. Gong X, Dan J, Li F, Wang L (2018) Suppression of mitochondrial respiration with local anesthetic ropivacaine targets breast cancer cells. J Thorac Dis 10(5):2804–2812. https://doi.org/10.21037/jtd.2018.05.21

    Article  PubMed  PubMed Central  Google Scholar 

  65. Jose C, Hebert-Chatelain E, Dias Amoedo N, Roche E, Obre E, Lacombe D et al (2018) Redox mechanism of levobupivacaine cytostatic effect on human prostate cancer cells. Redox Biol 18:33–42. https://doi.org/10.1016/j.redox.2018.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xing W, Chen DT, Pan JH, Chen YH, Yan Y, Li Q et al (2017) Lidocaine induces apoptosis and suppresses tumor growth in human hepatocellular carcinoma cells in vitro and in a xenograft model in vivo. Anesthesiology 126(5):868–881. https://doi.org/10.1097/ALN.0000000000001528

    Article  CAS  PubMed  Google Scholar 

  67. Bezu L, Kepp O, Kroemer G (2022) Immunogenic stress induced by local anesthetics injected into neoplastic lesions. Oncoimmunology 11(1):2077897. https://doi.org/10.1080/2162402X.2022.2077897

    Article  PubMed  PubMed Central  Google Scholar 

  68. Freeman J, Crowley PD, Foley AG, Gallagher HC, Iwasaki M, Ma D et al (2018) Effect of perioperative lidocaine and cisplatin on metastasis in a murine model of breast cancer surgery. Anticancer Res 38(10):5599–5606. https://doi.org/10.21873/anticanres.12894

    Article  CAS  PubMed  Google Scholar 

  69. Zhang X, Pang W, Liu H, Wang J (2019) Lidocine potentiates the cytotoxicity of 5-fluorouracil to choriocarcinoma cells by downregulating ABC transport proteins expression. J Cell Biochem 120(10):16533–16542. https://doi.org/10.1002/jcb.28913

    Article  CAS  PubMed  Google Scholar 

  70. Li K, Yang J, Han X (2014) Lidocaine sensitizes the cytotoxicity of cisplatin in breast cancer cells via up-regulation of RARbeta2 and RASSF1A demethylation. Int J Mol Sci 15(12):23519–23536. https://doi.org/10.3390/ijms151223519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zheng Q, Peng X, Zhang Y (2020) Cytotoxicity of amide-linked local anesthetics on melanoma cells via inhibition of Ras and RhoA signaling independent of sodium channel blockade. BMC anesthesiology 20(1):43 1–9. https://doi.org/10.1186/s12871-020-00957-4

    Article  CAS  Google Scholar 

  72. Zhu G, Zhang L, Dan J, Zhu Q (2020) Differential effects and mechanisms of local anesthetics on esophageal carcinoma cell migration, growth, survival and chemosensitivity. BMC Anesthesiol 20(1):126. https://doi.org/10.1186/s12871-020-01039-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liu P, Zhao L, Pol J, Levesque S, Petrazzuolo A, Pfirschke C et al (2019) Crizotinib-induced immunogenic cell death in non-small cell lung cancer. Nat Commun 10(1):1486. https://doi.org/10.1038/s41467-019-09415-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Xie C, Duffy AG, Mabry-Hrones D, Wood B, Levy E, Krishnasamy V et al (2019) Tremelimumab in combination with microwave ablation in patients with refractory biliary tract cancer. Hepatology 69(5):2048–2060. https://doi.org/10.1002/hep.30482

    Article  CAS  PubMed  Google Scholar 

  75. Theurich S, Rothschild SI, Hoffmann M, Fabri M, Sommer A, Garcia-Marquez M et al (2016) Local tumor treatment in combination with systemic ipilimumab immunotherapy prolongs overall survival in patients with advanced malignant melanoma. Cancer Immunol Res 4(9):744–754. https://doi.org/10.1158/2326-6066.CIR-15-0156

    Article  CAS  PubMed  Google Scholar 

  76. Duffy AG, Ulahannan SV, Makorova-Rusher O, Rahma O, Wedemeyer H, Pratt D et al (2017) Tremelimumab in combination with ablation in patients with advanced hepatocellular carcinoma. J Hepatol 66(3):545–551. https://doi.org/10.1016/j.jhep.2016.10.029

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

OK is supported by the Institut National du Cancer (INCa) and the DIM Elicit of the Ile-de-France. LB received a research grant by Bristol Myers Squibb Foundation France. GK is supported by the Ligue contre le Cancer (équipe labellisée); Agence National de la Recherche (ANR) – Projets blancs; AMMICa US23/CNRS UMS3655; Association pour la recherche sur le cancer (ARC); Association “Ruban Rose”; Cancéropôle Ile-de-France; Fondation pour la Recherche Médicale (FRM); a donation by Elior; Equipex Onco-Pheno-Screen; European Joint Program on Rare Diseases (EJPRD); Gustave Roussy Odyssea, the European Union Horizon 2020 Projects Oncobiome and Crimson; Fondation Carrefour; INCa; Inserm (HTE); Institut Universitaire de France; LabEx Immuno-Oncology (ANR-18-IDEX-0001); the Leducq Foundation; a Cancer Research ASPIRE Award from the Mark Foundation; the RHU Torino Lumière; Seerave Foundation; SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE); and SIRIC Cancer Research and Personalized Medicine (CARPEM).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lucillia Bezu or Guido Kroemer.

Ethics declarations

Conflict of interest

OK is a scientific co-founder of Samsara Therapeutics. GK has been holding research contracts with Daiichi Sankyo, Eleor, Kaleido, Lytix Pharma, PharmaMar, Samsara, Sanofi, Sotio, Vascage, and Vasculox/Tioma. GK is on the Board of Directors of the Bristol Myers Squibb Foundation France. GK is a scientific co-founder of everImmune, Osasuna Therapeutics, Samsara Therapeutics, and Therafast Bio. GK is the inventor of patents covering therapeutic targeting of aging, cancer, cystic fibrosis, and metabolic disorders.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a contribution to the special issue on: Novel immunotherapeutic combinations moving forward: The modulation of the immunosuppressive microenvironment – Guest Editor: Mads Hald Andersen

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezu, L., Kepp, O. & Kroemer, G. Local anesthetics and immunotherapy: a novel combination to fight cancer. Semin Immunopathol 45, 265–272 (2023). https://doi.org/10.1007/s00281-022-00960-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-022-00960-6

Keywords

Navigation