Skip to main content

Advertisement

Log in

Myeloid-derived suppressor cells and tumor escape from immune surveillance

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Tumor progression is known to be supported by chronic inflammatory conditions developed in the tumor microenvironment. It is characterized by the long-term secretion of various inflammatory soluble factors (including cytokines, chemokines, growth factors, reactive oxygen and nitrogen species, prostaglandins, etc.) and strong leukocyte infiltration. Among leukocytes infiltrating tumors, myeloid-derived suppressor cells (MDSCs) represent one of the most important players mediating immunosuppression and supporting tumor escape. These cells can strongly inhibit antitumor immune reactions mediated by T cells and NK cells. Moreover, MDSCs are generated, recruited to the tumor site, and activated not only under the influence of soluble inflammatory mediators but also due to extracellular vesicles (EVs) secreted by tumor cells. EVs play a key role in the formation of MDSCs via the conversion of normal myeloid cells and altering the normal myelopoiesis. In addition, EVs help create a suitable microenvironment for the metastatic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Giraldo NA, Becht E, Remark R, Damotte D, Sautès-Fridman C, Fridman WH (2014) The immune contexture of primary and metastatic human tumours. Curr Opin Immunol 27:8–15

    Article  CAS  PubMed  Google Scholar 

  2. Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T (2014) Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer 14:135–146

    Article  CAS  PubMed  Google Scholar 

  3. Lesokhin AM, Callahan MK, Postow MA, Wolchok JD (2015) On being less tolerant: enhanced cancer immunosurveillance enabled by targeting checkpoints and agonists of T cell activation. Sci Transl Med 7:280 sr1

    Article  CAS  Google Scholar 

  4. Fridman WH, Pagès F, Sautès-Fridman C, Galon J (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12:298–306

    Article  CAS  PubMed  Google Scholar 

  5. Melief CJ, van Hall T, Arens R, Ossendorp F, van der Burg SH (2015) Therapeutic cancer vaccines. J Clin Invest 125:3401–3412

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yang JC, Rosenberg SA (2016) Adoptive T-cell therapy for cancer. Adv Immunol 130:279–294

    Article  PubMed  Google Scholar 

  7. Postow MA, Callahan MK, Wolchok JD (2015) Immune checkpoint blockade in cancer therapy. J Clin Oncol 33:1974–1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gebhardt C, Sevko A, Jiang H, Lichtenberger R, Reith M, Tarnanidis K, Holland-Letz T, Umansky L, Beckhove P, Sucker A, Schadendorf D, Utikal J, Umansky V (2015) Myeloid cells and related chronic inflammatory factors as novel predictive markers in melanoma treatment with ipilimumab. Clin Cancer Res 21:5453–5459

    Article  CAS  PubMed  Google Scholar 

  9. Stadler S, Weina K, Gebhardt C, Utikal J (2015) New therapeutic options for advanced non-resectable malignant melanoma. Adv Med Sci 60:83–88

    Article  PubMed  Google Scholar 

  10. Zimmer L, Eigentler TK, Kiecker F, Simon J, Utikal J, Mohr P, Berking C, Kämpgen E, Dippel E, Stadler R, Hauschild A, Fluck M, Terheyden P, Rompel R, Loquai C, Assi Z, Garbe C, Schadendorf D (2015) Open-label, multicenter, single-arm phase II DeCOG-study of ipilimumab in pretreated patients with different subtypes of metastatic melanoma. J Transl Med 13:351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Garrido F, Algarra I, García-Lora AM (2010) The escape of cancer from T lymphocytes: immunoselection of MHC class I loss variants harboring structural-irreversible "hard" lesions. Cancer Immunol Immunother 59:1601–1606

    Article  CAS  PubMed  Google Scholar 

  12. Bedognetti D, Hendrickx W, Ceccarelli M, Miller LD, Seliger B (2016) Disentangling the relationship between tumor genetic programs and immune responsiveness. Curr Opin Immunol 39:150–158

    Article  CAS  PubMed  Google Scholar 

  13. Parmiani G, Castelli C, Santinami M, Rivoltini L (2007) Melanoma immunology: past, present and future. Curr Opin Oncol 19:121–127

    Article  PubMed  Google Scholar 

  14. Ostrand-Rosenberg S (2008) Immune surveillance: a balance between protumor and antitumor immunity. Curr Opin Genet Dev 18:11–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nishikawa H, Sakaguchi S (2014) Regulatory T cells in cancer immunotherapy. Curr Opin Immunol 27:1–7

    Article  CAS  PubMed  Google Scholar 

  16. Tan TT, Coussens LM (2007) Humoral immunity, inflammation and cancer. Curr Opin Immunol 19:209–216

    Article  CAS  PubMed  Google Scholar 

  17. Biswas SK, Allavena P, Mantovani A (2013) Tumor-associated macrophages: functional diversity, clinical significance, and open questions. Semin Immunopathol 35:585–600

    Article  CAS  PubMed  Google Scholar 

  18. Lewis CE, De Palma M, Naldini L (2007) Tie2-expressing monocytes and tumor angiogenesis: regulation by hypoxia and angiopoietin-2. Cancer Res 67:8429–8432

    Article  CAS  PubMed  Google Scholar 

  19. Fridlender ZG, Albelda SM (2012) Tumor-associated neutrophils: friend or foe? Carcinogenesis 33:949–955

    Article  CAS  PubMed  Google Scholar 

  20. Zhong H, Gutkin DW, Han B, Ma Y, Keskinov AA, Shurin MR, Shurin GV (2014) Origin and pharmacological modulation of tumor-associated regulatory dendritic cells. Int J Cancer 134:2633–2645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12:253–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. De Sanctis F, Solito S, Ugel S, Molon B, Bronte V, Marigo I (2016) MDSCs in cancer: conceiving new prognostic and therapeutic targets. Biochim Biophys Acta 1865:35–48

    CAS  PubMed  Google Scholar 

  23. Parker KH, Beury DW, Ostrand-Rosenberg S (2015) Myeloid-derived suppressor cells: critical cells driving immune suppression in the tumor microenvironment. Adv Cancer Res 128:95–139

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kumar V, Patel S, Tcyganov E, Gabrilovich DI (2016) The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol 37:208–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Meirow Y, Kanterman J, Baniyash M (2015) Paving the road to tumor development and spreading: myeloid-derived suppressor cells are ruling the fate. Front Immunol 6:523

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity. Cancer Immunol Immunother 59:1593–1600

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF, Mandruzzato S, Murray PJ, Ochoa A, Ostrand-Rosenberg S, Rodriguez PC, Sica A, Umansky V, Vonderheide RH, Gabrilovich DI (2016) Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 7:12150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Solito S, Marigo I, Pinton L, Damuzzo V, Mandruzzato S, Bronte V (2014) Myeloid-derived suppressor cell heterogeneity in human cancers. Ann N Y Acad Sci 1319:47–65

    Article  CAS  PubMed  Google Scholar 

  29. Filipazzi P, Huber V, Rivoltini L (2012) Phenotype, function and clinical implications of myeloid-derived suppressor cells in cancer patients. Cancer Immunol Immunother 61:255–263

    Article  CAS  PubMed  Google Scholar 

  30. Kanterman J, Sade-Feldman M, Baniyash M (2012) New insights into chronic inflammation-induced immunosuppression. Semin Cancer Biol 22:307–318

    Article  CAS  PubMed  Google Scholar 

  31. Umansky V, Sevko A (2012) Melanoma-induced immunosuppression and its neutralization. Semin Cancer Biol 22:319–326

    Article  CAS  PubMed  Google Scholar 

  32. Umansky V, Sevko A, Gebhardt C, Utikal J (2014) Myeloid-derived suppressor cells in malignant melanoma. J Dtsch Dermatol Ges 12:1021–1027

    PubMed  Google Scholar 

  33. Katanov C, Lerrer S, Liubomirski Y, Leider-Trejo L, Meshel T, Bar J, Feniger-Barish R, Kamer I, Soria-Artzi G, Kahani H, Banerjee D, Ben-Baruch A (2015) Regulation of the inflammatory profile of stromal cells in human breast cancer: prominent roles for TNF-α and the NF-κB pathway. Stem Cell Res Ther 6:87

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Thery C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2:569–579

    CAS  PubMed  Google Scholar 

  35. Filipazzi P, Bürdek M, Villa A, Rivoltini L, Huber V (2012) Recent advances on the role of tumor exosomes in immunosuppression and disease progression. Semin Cancer Biol 22:342–349

    Article  CAS  PubMed  Google Scholar 

  36. Whiteside TL (2016) Exosomes and tumor-mediated immune suppression. J Clin Invest 126:1216–1223

    Article  PubMed  Google Scholar 

  37. Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9:798–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sade-Feldman M, Kanterman J, Ish-Shalom E, Elnekave M, Horwitz E, Baniyash M (2013) Tumor necrosis factor-alpha blocks differentiation and enhances suppressive activity of immature myeloid cells during chronic inflammation. Immunity 38:541–554

    Article  CAS  PubMed  Google Scholar 

  39. Gasteiger G, Rudensky AY (2014) Interactions between innate and adaptive lymphocytes. Nat Rev Immunol 14:631–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kaplan DH, Shankaran V, Dighe AS, Stockert E, Aguet M, Old LJ, Schreiber RD (1998) Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci U S A 95:7556–7561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zaidi MR, Merlino G (2011) The two faces of interferon-γ in cancer. Clin Cancer Res 17:6118–6124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Raber P, Ochoa AC, Rodríguez PC (2012) Metabolism of L-arginine by myeloid-derived suppressor cells in cancer: mechanisms of T cell suppression and therapeutic perspectives. Immunol Investig 41:614–634

    Article  CAS  Google Scholar 

  43. Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells inhibit T-cell activation by depleting cysteine and cysteine. Cancer Res 70:68–77

    Article  CAS  PubMed  Google Scholar 

  44. Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P, Bronte V, Chouaib S (2014) PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 211:781–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gajewski TF, Woo SR, Zha Y, Spaapen R, Zheng Y, Corrales L, Spranger S (2013) Cancer immunotherapy strategies based on overcoming barriers within the tumor microenvironment. Curr Opin Immunol 25:268–276

    Article  CAS  PubMed  Google Scholar 

  46. Spranger S, Spaapen RM, Zha Y, Williams J, Meng Y, Ha TT, Gajewski TF (2013) Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med 5:200ra116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Noman MZ, Janji B, Hu S, Wu JC, Martelli F, Bronte V, Chouaib S Tumor-promoting effects of myeloid-derived suppressor cells are potentiated by hypoxia-induced expression of miR-210. Cancer Res 75:3771–3787

  48. Corzo CA, Condamine T, Lu L, Cotter MJ, Youn JI, Cheng P, Cho HI, Celis E, Quiceno DG, Padhya T, McCaffrey TV, McCaffrey JC, Gabrilovich DI (2010) HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med 207:2439–2453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sitkovsky MV, Hatfield S, Abbott R, Belikoff B, Lukashev D, Ohta A (2014) Hostile, hypoxia-A2-adenosinergic tumor biology as the next barrier to overcome for tumor immunologists. Cancer Immunol Res 2:598–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Umansky V, Shevchenko I, Bazhin AV, Utikal J (2014) Extracellular adenosine metabolism in immune cells in melanoma. Cancer Immunol Immunother 63:1073–1080

    Article  CAS  PubMed  Google Scholar 

  51. Pickup M, Novitskiy S, Moses HL (2013) The roles of TGFβ in the tumour microenvironment. Nat Rev Cancer 13:788–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Regateiro FS, Howie D, Nolan KF, Agorogiannis EI, Greaves DR, Cobbold SP, Waldmann H (2011) Generation of anti-inflammatory adenosine by leukocytes is regulated by TGF-beta. Eur J Immunol 41:2955–2965

    Article  CAS  PubMed  Google Scholar 

  53. Junger WG (2011) Immune cell regulation by autocrine purinergic signalling. Nat Rev Immunol 11:201–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ryzhov S, Novitskiy SV, Goldstein AE, Biktasova A, Blackburn MR, Biaggioni I, Dikov MM, Feoktistov I (2011) Adenosinergic regulation of the expansion and immunosuppressive activity of CD11b + Gr1+ cells. J Immunol 187:6120–6129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bogdan C (2001) Nitric oxide and the immune response. Nat Immunol 2:907–916

    Article  CAS  PubMed  Google Scholar 

  56. Molon B, Ugel S, Del Pozzo F (2011) Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J Exp Med 208:1949–1962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sebens Müerköster S, Werbing V, Sipos B, Debus MA, Witt M, Grossmann M, Leisner D, Kötteritzsch J, Kappes H, Klöppel G, Altevogt P, Fölsch UR, Schäfer H (2007) Drug-induced expression of the cellular adhesion molecule L1CAM confers anti-apoptotic protection and chemoresistance in pancreatic ductal adenocarcinoma cells. Oncogene 26:2759–2768

    Article  PubMed  CAS  Google Scholar 

  58. Tartour E, Pere H, Maillere B, Terme M, Merillon N, Taieb J, Sandoval F, Quintin-Colonna F, Lacerda K, Karadimou A, Badoual C, Tedgui A, Fridman WH, Oudard S (2011) Angiogenesis and immunity: a bidirectional link potentially relevant for the monitoring of antiangiogenic therapy and the development of novel therapeutic combination with immunotherapy. Cancer Metastasis Rev 30:83–95

    Article  CAS  PubMed  Google Scholar 

  59. Qu P, Yan C, Du H (2011) Matrix metalloproteinase 12 overexpression in myeloid lineage cells plays a key role in modulating myelopoiesis, immune suppression, and lung tumorigenesis. Blood 117:4476–4489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pan PY, Ma G, Weber KJ, Ozao-Choy J, Wang G, Yin B, Divino CM, Chen SH (2010) Immune stimulatory receptor CD40 is required for T-cell suppression and T regulatory cell activation mediated by myeloid-derived suppressor cells in cancer. Cancer Res 70:99–108

    Article  CAS  PubMed  Google Scholar 

  61. Sevko A, Sade-Feldman M, Kanterman J, Michels T, Falk CS, Umansky L, Ramacher M, Kato M, Schadendorf D, Baniyash M, Umansky V (2013) Cyclophosphamide promotes chronic inflammation-dependent immunosuppression and prevents antitumor response in melanoma. J Invest Dermatol 133:1610–1619

    Article  CAS  PubMed  Google Scholar 

  62. Meyer C, Sevko A, Ramacher M, Bazhin AV, Falk CS, Osen W, Borrello I, Kato M, Schadendorf D, Baniyash M, Umansky V (2011) Chronic inflammation promotes myeloid-derived suppressor cell activation blocking antitumor immunity in transgenic mouse melanoma model. Proc Natl Acad Sci USA 108:17111–17116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sevko A, Michels T, Vrohlings M, Umansky L, Beckhove P, Kato M, Shurin GV, Shurin MR, Umansky V (2013) Antitumor effect of paclitaxel is mediated by inhibition of myeloid-derived suppressor cells and chronic inflammation in the spontaneous melanoma model. J Immunol 190:2464–2471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mikyšková R, Indrová M, Polláková V, Bieblová J, Símová J, Reiniš M (2012) Cyclophosphamide-induced myeloid-derived suppressor cell population is immunosuppressive but not identical to myeloid-derived suppressor cells induced by growing TC-1 tumors. J Immunother 35:374–384

    Article  PubMed  CAS  Google Scholar 

  65. Schulz O, Hammerschmidt SI, Moschovakis GL, Förster R (2016) Chemokines and chemokine receptors in lymphoid tissue dynamics. Annu Rev Immunol 34:203–242

    Article  PubMed  CAS  Google Scholar 

  66. Homey B, Muller A, Zlotnik A (2002) Chemokines: agents for the immunotherapy of cancer? Nature Rev Immunol 2:175–184

    Article  CAS  Google Scholar 

  67. Lesokhin AM, Hohl TM, Kitano S, Cortez C, Hirschhorn-Cymerman D, Avogadri F, Rizzuto GA, Lazarus JJ, Pamer EG, Houghton AN, Merghoub T, Wolchok JD (2012) Monocytic CCR2(+) myeloid-derived suppressor cells promote immune escape by limiting activated CD8 T-cell infiltration into the tumor microenvironment. Cancer Res 72:876–886

    Article  CAS  PubMed  Google Scholar 

  68. Izhak L, Wildbaum G, Weinberg U, Shaked Y, Alami J, Dumont D, Friedman B, Stein A, Karin N (2010) Predominant expression of CCL2 at the tumor site of prostate cancer patients directs a selective loss of immunological tolerance to CCL2 that could be amplified in a beneficial manner. J Immunol 184:1092–1101

    Article  CAS  PubMed  Google Scholar 

  69. Izhak L, Wildbaum G, Jung S, Stein A, Shaked Y, Karin N (2012) Dissecting the autocrine and paracrine roles of the CCR2-CCL2 axis in tumor survival and angiogenesis. PLoS One 7:e28305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Van Deventer HW, O’Connor W Jr, Brickey WJ, Aris RM, Ting JP, Serody JS (2005) C-C chemokine receptor 5 on stromal cells promotes pulmonary metastasis. Cancer Res 65:3374–3379

    CAS  PubMed  Google Scholar 

  71. Halama N, Zoernig I, Berthel A, Kahlert C, Klupp F, Suarez-Carmona M, Suetterlin T, Brand K, Krauss J, Lasitschka F, Lerchl T, Luckner-Minden C, Ulrich A, Koch M, Weitz J, Schneider M, Buechler MW, Zitvogel L, Herrmann T, Benner A, Kunz C, Luecke S, Springfeld C, Grabe N, Falk CS, Jaeger D (2016) Tumoral immune cell exploitation in colorectal cancer metastases can Be targeted effectively by anti-CCR5 therapy in cancer patients. Cancer Cell 29:587–601

    Article  CAS  PubMed  Google Scholar 

  72. Balistreri CR, Carruba G, Calabro M, Campisi I, Di Carlo D, Lio D, Colonna-Romano G, Candore G, Caruso C (2009) CCR5 proinflammatory allele in prostate cancer risk: a pilot study in patients and centenarians from Sicily. Ann N Y Acad Sci 1155:289–292

    Article  CAS  PubMed  Google Scholar 

  73. Span PN, Pollakis G, Paxton WA, Sweep FC, Foekens J, Martens JW, Sieuwerts AM, van Laarhoven HW (2015) Improved metastasis-free survival in nonadjuvantly treated postmenopausal breast cancer patients with chemokine receptor 5 del32 frame shift mutations. Int J Cancer 136:91–97

    Article  CAS  PubMed  Google Scholar 

  74. Ng-Cashin J, Kuhns JJ, Burkett SE, Powderly JD, Craven RR, van Deventer HW, Kirby SL, Serody JS (2003) Host absence of CCR5 potentiates dendritic cell vaccination. J Immunol 170:4201–4208

    Article  CAS  PubMed  Google Scholar 

  75. Kato M, Takahashi M, Akhand AA, Liu W, Dai Y, Shimizu S, Iwamoto T, Suzuki H, Nakashima I (1998) Transgenic mouse model for skin malignant melanoma. Oncogene 17:1885–1888

    Article  CAS  PubMed  Google Scholar 

  76. Eng C (1999) RET proto-oncogene in the development of human cancer. J Clin Oncol 17:380–383

    Article  CAS  PubMed  Google Scholar 

  77. Umansky V, Abschuetz O, Osen W, Ramacher M, Zhao F, Kato M, Schadendorf D (2008) Melanoma-specific memory T cells are functionally active in ret transgenic mice without macroscopic tumors. Cancer Res 68:9451–9458

    Article  CAS  PubMed  Google Scholar 

  78. Livingstone E, Zimmer L, Vaubel J, Schadendorf D (2012) Current advances and perspectives in the treatment of advanced melanoma. J Dtsch Dermatol Ges 10:319–325

    PubMed  Google Scholar 

  79. Abschuetz O, Osen W, Frank K, Kato M, Schadendorf D, Umansky V (2012) T-cell mediated immune responses induced in ret transgenic mouse model of malignant melanoma. Cancers (Basel) 4:490–503

    Article  CAS  Google Scholar 

  80. Zhao F, Falk C, Osen W, Kato M, Schadendorf D, Umansky V (2009) Activation of p38 mitogen-activated protein kinase drives dendritic cells to become tolerogenic in ret transgenic mice spontaneously developing melanoma. Clin Cancer Res 15:4382–4390

    Article  CAS  PubMed  Google Scholar 

  81. Lugowska I, Kowalska M, Fuksiewicz M, Kotowicz B, Mierzejewska E, Koseła-Paterczyk H, Szamotulska K, Rutkowski P (2015) Serum markers in early-stage and locally advanced melanoma. Tumour Biol 36:8277–8285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rider P, Carmi Y, Voronov E, Apte RN (2013) Interleukin-1α. Semin Immunol 25:430–438

    Article  CAS  PubMed  Google Scholar 

  83. Bonecchi R, Locati M, Mantovani A (2011) Chemokines and cancer: a fatal attraction. Cancer Cell 19:434–435

    Article  CAS  PubMed  Google Scholar 

  84. Kimpfler S, Sevko A, Ring S, Falk C, Osen W, Frank K, Kato M, Mahnke K, Schadendorf D, Umansky V (2009) Skin melanoma development in ret transgenic mice despite the depletion of CD25 + Foxp3+ regulatory T cells in lymphoid organs. J Immunol 183:6330–6337

    Article  CAS  PubMed  Google Scholar 

  85. Jiang H, Gebhardt C, Umansky L, Beckhove P, Schulze TJ, Utikal J, Umansky V (2015) Elevated chronic inflammatory factors and myeloid-derived suppressor cells indicate poor prognosis in advanced melanoma patients. Int J Cancer 136:2352–2360

    Article  CAS  PubMed  Google Scholar 

  86. Jordan KR, Amaria RN, Ramirez O, Callihan EB, Gao D, Borakove M, Manthey E, Borges VF, McCarter MD (2013) Myeloid-derived suppressor cells are associated with disease progression and decreased overall survival in advanced-stage melanoma patients. Cancer Immunol Immunother 62:1711–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Weide B, Martens A, Zelba H, Derhovanessian E, Bailur JK, Kyzirakos C, Pflugfelder A, Eigentler TK, Di Giacomo AM, Maio M, Aarntzen EH, de Vries J, Sucker A, Schadendorf D, Büttner P, Garbe C, Pawelec G (2014) Myeloid-derived suppressor cells predict survival of advanced melanoma patients: comparison with regulatory T cells and NY-ESO-1- or Melan-A-specific T cells. Clin Cancer Res 20:1601–1609

    Article  CAS  PubMed  Google Scholar 

  88. Pico de Coaña Y, Poschke I, Gentilcore G, Mao Y, Nyström M, Hansson J, Masucci GV, Kiessling R (2013) Ipilimumab treatment results in an early decrease in the frequency of circulating granulocytic myeloid-derived suppressor cells as well as their Arginase1 production. Cancer Immunol Res 1:158–162

    Article  PubMed  CAS  Google Scholar 

  89. Zhang B, Wang Z, Wu L, Zhang M, Li W, Ding J, Zhu J, Wei H, Zhao K (2013) Circulating and tumor-infiltrating myeloid-derived suppressor cells in patients with colorectal carcinoma. PLoS One 8:e57114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Solito S, Falisi E, Diaz-Montero CM, Doni A, Pinton L, Rosato A, Francescato S, Basso G, Zanovello P, Onicescu G, Garrett-Mayer E, Montero AJ, Bronte V, Mandruzzato S (2011) A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells. Blood 118:2254–2265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tkach M, Thery C (2016) Communication by extracellular vesicles: where we are and where we need to go. Cell 164:1226–1232

    Article  CAS  PubMed  Google Scholar 

  92. Hendrix A, Westbroek W, Bracke M, Wever OD (2010) An ex(o)citing machinery for invasive tumor growth. Cancer Res 70:9533–9537

    Article  CAS  PubMed  Google Scholar 

  93. Raiborg C, Rusten TE, Stenmark H (2003) Protein sorting into multivesicular endosomes. Current Opin Cell Biol 15:446–455

    Article  CAS  Google Scholar 

  94. Ginestra A, La Placa MD, Saladino F, Cassara D, Nagase H, Vittorelli ML (1998) The amount and proteolytic content of vesicles shed by human cancer cell lines correlates with their in vitro invasiveness. Anticancer Res 18(5A):3433–3437

    CAS  PubMed  Google Scholar 

  95. Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L (2010) Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int 78:838–848

    Article  CAS  PubMed  Google Scholar 

  96. Bretz NP, Ridinger J, Rupp AK, Rimbach K, Keller S, Rupp C, Marme F, Umansky L, Umansky V, Eigenbrod T, Sammar M, Altevogt P (2013) Body fluid exosomes promote secretion of inflammatory cytokines in monocytic cells via toll-like receptor signaling. J Biol Chem 288:36691–36702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chow A, Zhou W, Liu L, Fong MY, Champer J, Van Haute D, Chin AR, Ren X, Gugiu BG, Meng Z, Huang W, Ngo V, Kortylewski M, Wang SE (2014) Macrophage immunomodulation by breast cancer-derived exosomes requires toll-like receptor 2-mediated activation of NF-kappaB. Sci Rep 4:5750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chalmin F, Ladoire S, Mignot G, Vincent J, Bruchard M, Remy-Martin JP, Boireau W, Rouleau A, Simon B, Lanneau D, De Thonel A, Multhoff G, Hamman A, Martin F, Chauffert B, Solary E, Zitvogel L, Garrido C, Ryffel B, Borg C, Apetoh L, Rébé C, Ghiringhelli F (2010) Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest 120:457–471

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Altevogt P, Bretz NP, Ridinger J, Utikal J, Umansky V (2014) Novel insights into exosome-induced, tumor-associated inflammation and immunomodulation. Semin Cancer Biol 28:51–57

    Article  CAS  PubMed  Google Scholar 

  100. Gajos-Michniewicz A, Duechler M, Czyz M (2014) MiRNA in melanoma-derived exosomes. Cancer Lett 347:29–37

    Article  CAS  PubMed  Google Scholar 

  101. Felicetti F, De Feo A, Coscia C, Puglisi R, Pedini F, Pasquini L, Bellenghi M, Errico MC, Pagani E, Care A (2016) Exosome-mediated transfer of miR-222 is sufficient to increase tumor malignancy in melanoma. J Transl Med 14:56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, Garcia-Santos G, Ghajar C, Nitadori-Hoshino A, Hoffman C, Badal K, Garcia BA, Callahan MK, Yuan J, Martins VR, Skog J, Kaplan RN, Brady MS, Wolchok JD, Chapman PB, Kang Y, Bromberg J, Lyden D (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18:883–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ridder K, Sevko A, Heide J, Dams M, Rupp AK, Macas J, Starmann J, Tjwa M, Plate KH, Sultmann H, Altevogt P, Umansky V, Momma S (2015) Extracellular vesicle-mediated transfer of functional RNA in the tumor microenvironment. Oncoimmunology 4:e1008371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Liu Y, Gu Y, Han Y, Zhang Q, Jiang Z, Zhang X, Huang B, Xu X, Zheng J, Cao X (2016) Tumor exosomal RNAs promote lung pre-metastatic niche formation by activating alveolar epithelial TLR3 to recruit neutrophils. Cancer Cell 30:243–256

    Article  PubMed  CAS  Google Scholar 

  105. Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R, Lovat F, Fadda P, Mao C, Nuovo GJ, Zanesi N, Crawford M, Ozer GH, Wernicke D, Alder H, Caligiuri MA, Nana-Sinkam P, Perrotti D, Croce CM (2012) MicroRNAs bind to toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci U S A 109:E2110–E2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, Singh S, Williams C, Soplop N, Uryu K, Pharmer L, King T, Bojmar L, Davies AE, Ararso Y, Zhang T, Zhang H, Hernandez J, Weiss JM, Dumont-Cole VD, Kramer K, Wexler LH, Narendran A, Schwartz GK, Healey JH, Sandstrom P, Labori KJ, Kure EH, Grandgenett PM, Hollingsworth MA, de Sousa M, Kaur S, Jain M, Mallya K, Batra SK, Jarnagin WR, Brady MS, Fodstad O, Muller V, Pantel K, Minn AJ, Bissell MJ, Garcia BA, Kang Y, Rajasekhar VK, Ghajar CM, Matei I, Peinado H, Bromberg J, Lyden D (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527:329–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hood JL, San RS, Wickline SA (2011) Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res 71:3792–3801

    Article  CAS  PubMed  Google Scholar 

  108. Dror S, Sander L, Schwartz H, Sheinboim D, Barzilai A, Dishon Y, Apcher S, Golan T, Greenberger S, Barshack I, Malcov H, Zilberberg A, Levin L, Nessling M, Friedmann Y, Igras V, Barzilay O, Vaknine H, Brenner R, Zinger A, Schroeder A, Gonen P, Khaled M, Erez N, Hoheisel JD, Levy C (2016) Melanoma miRNA trafficking controls tumour primary niche formation. Nat Cell Biol 18:1006–1017

    Article  CAS  PubMed  Google Scholar 

  109. Andreola G, Rivoltini L, Castelli C, Huber V, Perego P, Deho P, Squarcina P, Accornero P, Lozupone F, Lugini L, Stringaro A, Molinari A, Arancia G, Gentile M, Parmiani G, Fais S (2002) Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles. J Exp Med 195:1303–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the German Research Council (RTG2099 to J. Utikal, V. Umansky and DFG GE-2152/1-2 to C. Gebhardt), the DKFZ-MOST Cooperation in Cancer Research (CA157 to V. Umansky), and the German Cancer Aid (109312 to J. Utikal). This work was kindly backed by the COST Action BM1404 Mye-EUNITER (www.mye-euniter.eu). COST is supported by the EU Framework Program Horizon 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Umansky.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This article is a contribution to the special issue on Cancer and Autoimmunity - Guest Editor: Mads Hald Andersen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umansky, V., Blattner, C., Fleming, V. et al. Myeloid-derived suppressor cells and tumor escape from immune surveillance. Semin Immunopathol 39, 295–305 (2017). https://doi.org/10.1007/s00281-016-0597-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-016-0597-6

Keywords

Navigation