Abstract
Agonistic autoantibodies (AABs) against G-protein-coupled receptor (GPCR) are present mainly in diseases of the cardiovascular system or in diseases associated with cardiovascular disturbances. The increasing knowledge about the role of autoantibodies against G-protein-coupled receptor (GPCR-AABs) as pathogenic drivers, the resulting development of strategies aimed at their removal or neutralization, and the evidenced patient benefit associated with such therapies have created the need for a summary of GPCR-AAB-associated diseases. Here, we summarize the present knowledge about GPCR-AABs in cardiovascular diseases. The identity of the GPCR-AABs and their prevalence in each of several specific cardiovascular diseases are documented. The structure of GPCR is also briefly discussed. Using this information, differences between classic agonists and GPCR-AABs in their GPCR binding and activation are presented and the resulting pathogenic consequences are discussed. Furthermore, treatment strategies that are currently under study, most of which are aimed at the removal and in vivo neutralization of GPCR-AABs, are indicated and their patient benefits discussed. In this context, immunoadsorption using peptides/proteins or aptamers as binders are introduced. The use of peptides or aptamers for in vivo neutralization of GPCR-AABs is also described. Particular attention is given to the GPCR-AABs directed against the adrenergic beta1-, beta2-, and α1-receptor as well as the muscarinic receptor M2, angiotensin II-angiotensin receptor type I, endothelin1 receptor type A, angiotensin (1–7) Mas-receptor, and 5-hydroxytryptamine receptor 4. Among the diseases associated with GPCR-AABs, special focus is given to idiopathic dilated cardiomyopathy, Chagas’ cardiomyopathy, malignant and pulmonary hypertension, and kidney diseases. Relationships of GPCR-AABs are indicated to glaucoma, peripartum cardiomyopathy, myocarditis, pericarditis, preeclampsia, Alzheimer’s disease, Sjörgren’s syndrome, and metabolic syndrome after cancer chemotherapy.


Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Wallukat G, Nissen E, Müller J, Brinckmann R, Schimke I, Kunze R (2002) The pathophysiological role of autoantibodies directed to G-protein coupled receptors and therapeutic strategies of antibody removal. In: Kunze R, Brinkmann R (eds) Affina academy: G-protein coupled receptors and autoantibodies, 7–47. Pabst Science Publishers, Lengerich, http://www.pabst-publishers.de/Medizin/buecher/3936142939.htm
Xia Y, Kellems RE (2011) Receptor-activating autoantibodies and disease: preeclampsia and beyond. Expert Rev Clin Immunol 7(5):659–674
Patel PA, Hernandez AF (2013) Targeting anti-beta1-adrenergic receptor antibodies for dilated cardiomyopathy. Eur J Heart Fail 15:724–729
Luft FC (2013) Activating autoantibodies and cardiovascular diseases. Physiology 28:254–261
Sterin-Borda L, Cossio PM, Gimeno MF, Gimeno AL, Diez C, Laguens PP, Meckert PC, Arana RM (1976) Effect of chagasic sera on the rat isolated atrial preparation: immunological, morphological and functional aspects. Cardiovas Res 10:613–622
Borda E, Pascual J, Cossio P, De la Vega M, Arana R, Sterin-Borda L (1984) A circulating IgG in Chagas’ disease which binds to ß-adrenoceptors of myocardium and modulates their activity. Clin Exp Immunol 57:679–686
Venter JC, Fraser CM, Harrison LC (1980) Autoantibodies to beta 2-adrenergic receptors: a possible cause of adrenergic hyporesponsiveness in allergic rhinitis and asthma. Science 207:1361–1363
Wallukat G, Wollenberger A (1987) Effects of gamma globulin fraction of patients with allergic asthma and dilated cardiomyopathy on chronotropic beta adrenoceptor function in cultured neonatal rat heart myocytes. Biomed Biochim Acta 46:S634–S639
Munoz-Saravia SG, Haberland A, Wallukat G, Schimke I (2012) Chronic Chagas’ heart disease—from pathogenesis to treatment regimes. Appl Cardiopulm Pathophysiol 16:55–81
Bywater RP (2005) Location and nature of the residues important for ligand recognition in G-protein coupled receptors. J Mol Recognit 18:60–72
Unal H, Jagannathan R, Bhat MB, Karnik SS (2010) Ligand-specific conformation of extracellular loop-2 in the angiotensin II type 1 receptor. J Biol Chem 285:16341–16350
Schimke I, Haberland A, Will-Shahab L, Küttner I, Papies B (1992) In vitro effects of reactive O2 species on the beta-receptor-adenylyl cyclase system. Mol Cell Biochem 110:41–46
Limas CJ, Goldenberg IF, Limas C (1990) Influence of anti-beta receptor antibodies on cardiac adenylate cyclase in patients with idiopathic dilated cardiomyopathy. Am Heart J 119:1322–1328
Jahns R, Boivin V, Lohse MJ (2006) Beta1-adrenergic receptor-directed autoimmunity as a cause of dilated cardiomyopathy in rats. Int J Cardiol 112:7–14
Xia Y, Wen H, Bobst S, Day MC, Kellems RE (2003) Maternal autoantibodies from preeclamptic patients activate angiotensin receptors on human trophoblast cells. J Soc Gynecol Investig 10:82–93
Wallukat G, Wolleberger A (1991) Autoantibodies to β2 adrenergic receptor with antiadrenergic activity from patients with allergic asthma. J Allergy Clin Immunol 88:581–587
Mijares A, Lebesgue D, Argibay J, Hoebeke J (1996) Anti-peptide antibodies sensitive to the active state of the beta2 adrenergic receptor. FEBS Lett 399:188–191
Elies R, Fu LXM, Eftekhari P, Wallukat G et al (1998) Immunochemical and functional characterization of an agonist-like monoclonal antibody against the M2 acetylcholine receptor. Eur J Biochem 251:659–666
Mijares A, Lesbesgue D, Wallukat G, Hoebeke J (2000) From agonist to antagonist: Fab fragments of an agonist-like monoclonal anti-β(2)-adrenoceptor antibody behave as antagonist. Mol Pharmacol 58:373–379
Hoebeke J (2001) Molecular mechanisms of anti-G-protein-coupled receptor autoantibody. Autoimmunity 34:161–164
Hebert TE, Mofett S, Morello JP, Loisel TP, Bichet DG, Barret C, Bouvier MA (1996) Peptide derived from a β2-adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation. J Biol Chem 271:16384–16392
Limbird LE, Lefkowitz RJ (1978) Agonist-induced increase in apparent beta-adrenergic receptor size. Proc Natl Acad Sci U S A 75:228–232
Elias F (2001) Detection of Trypanosoma cruzi DNA and analysis of the B cell in the heart tissue of patients with chronic Chagas’ heart disease. Dissertation, FU Berlin
Staudt A, Eichler P, Trimpert C, Felic SB, Greinacher A (2007) Fc(gamma) receptor IIa on cardiomyocytes and their potential functional relevance in dilated cardiomyopathy. J Am Coll Cardiol 49:1684–1692
Lukitsch I, Kehr J, Chaykovska L, Wallukat G, Nieminen-Kelhä M, Batuman V, Dragun D, Gollasch M (2012) Renal ischemia and transplantation predics pose to vascular constriction mediated by angiotensin II type 1 receptor-activating antibodies. Transplantation 94:8–13
Wallukat G, Wollenberger A (1987) Involvement of β2-adrenergic receptors in the potentaion of the chronotropic action of isoprenaline evoked in rocker-cultured neonatal rat heart cells by pyruvate and L (+) lactate. In: Beamisch RE, Panagia V, Dhalla NS (eds) Parmacological aspects of heart disease. Martinius Nijhoff Publishing, Boston, pp 217–231
Jahns R, Boivin V, Krapf T, Wallukat G, Boege F, Lohse MJ (2000) Modulation of β1-adrenoceptor activity by domain-specific antibodies and heart-failure associated autoantibodies. J Am Coll Cardiol 36:280–1287
Krause EG, Bartel S, Beyerdörfer I, Wallukat G (1996) Activation of cyclic AMP-dependent protein kinase in cardiomyocytes by anti-beta 1-adrenoceptor autoantibodies from patients with idiopathic dilated cardiomyopathy. Blood Press Suppl 3:37–40
Christ T, Wetwer E, Dobrew D, Adolph E, Knaut M, Wallukat G, Ravens U (2001) Autoantibodies against the beta1 adrenoceptor from patients with dilated cardiomyopathy prolong action potential duration and enhance contractility in isolated cardiomyocytes. J Mol Cell Cardiol 33:1280–1287
Wallukat G, Morwinski R, Kowal K, Förster A, Boewer V, Wollenberger A (1991) Autoantibodies against the β-adrenergic receptor in human myocarditis and dilated cardiomyopathy: ß-adrenergic agonism without desensitization. Eur Heart J 12)
Wallukat G, Fu MLX, Magnusson Y, Hjalmarson Ǻ, Hoebeke J, Wollenberger A (1996) Agonistic effects of anti-peptide antibodies and autoantibodies against adrenergic and cholinergic receptors: absence of desensitisation. Blood Press 5:31–36
Wallukat G, Fu HM, Matsui S, Hjalmarson Å, Fu ML (1999) Autoantibodies against M2 muscarinic receptors in patients with cardiomyopathy display non-desensitizing agonist-like effects. Life Sci 64:465–469
Podlowski S, Luther HP, Morwinski R, Müller J, Wallukat G (1998) Agonistic anti-β1-adrenergic receptor autoantibodies from cardiomyopathy patients reduce the β1-adrenergic receptor expression in neonatal cardiomyocytes. Circulation 98:2470–2476
Staudt Y, Mobini R, Fu M, Felix SB, Kuhn JP, Staudt A (2003) Beta1-adrenoceptor antibodies induce apoptosis in adult isolated cardiomyocytes. Eur J Pharmacol 466:1–6
Jane-wit D, Alfuntas CZ, Johnson JM, Yong S, Wickley PJ, Wang C, Popovic ZB, Damson DS, Perez DM, Tuohy VK (2007) Beta1-adrenergic receptor autoantibodies mediate dilated cardiomyopathy by agonistically inducing cardiomyocyte apoptosis. Circulation 116:399–410
Haberland A, Wallukat G, Dahmen C, Kage A, Schimke I (2011) Aptamer neutralization of beta1-adrenoceptror autoantibodies isolated from patients with cardiomyopathies. Circ Res 109:986–992
Okruhlikova L, Morwinski R, Schulze W, Bartel S, Weismann P, Tribulova N, Wallukat G (2007) Autoantibodies against G-protein coupled receptors modulate heart mast cells. Cell Mol Immunol 4:127–133
Matsui S, Fu MLX, Katsuda S, Hayase M, Yamaguchi N, Teraoka K, Kurikara T, Takaoshi N, Murakami E, Hoebeke J, Hjalmarson Å (1997) Peptides derived from cardiovascular G-protein-coupled receptors induce morphological cardiomyopathic changes in immunized rabbits. J Mol Cell Cardiol 29:641–655
Matsui S, Persson N, Fu HM, Katsuda S, Hayase M, Teraoka K, Kurikara T, Fu ML (2000) Protective effect of bisoprolol on beta1-adrenoceptor peptide-induced myocardial damage in rabbits. Herz 25:267–270
Jahns R, Boivin V, Hein L, Triebel S, Angermann CE, Ertl G, Lohse MJ (2004) Direct evidence for a beta1-adrenergic receptor-directed autoimmune attack as a cause of idiopathic dilated cardiomyopathy. J Clin Invest 113:1419–1429
Jahns R, Boivin V, Lohse MJ (2006) Beta 1-adrenergic receptor-directed autoimmunity as a cause of dilated cardiomyopathy. Int J Cardiol 112:7–14
Matsui S, Fu M, Hayase M, Katsuda S, Yamaguchi N, Teraoka K, Kurikara T, Takekoshi N (2003) Transfer of rabbit autoimmune cardiomyopathy into severe combined immunodeficiency mice. J Cardiovasc Pharmacol 42(Suppl 1):99–103
Omerovic E, Bollano E, Andersson B, Kujacic V, Schulze W, Hjalmarson Å, Waagstein F, Fu M (2000) Induction of cardiomyopathy in severe combined immunodeficiency mice by transfer of lymphocytes from patients with idiopathic dilated cardiomyopathy. Autoimmunity 32:271–280
Jahns R, Lohse M (2010) β1-Adrenoceptor-Antikörper inhibierende, mutierte doppelt zyklisierte Rezeoptorpeptide. EP 2 197 900, 05.08.2010
Sterin-Borda L, Joensen L, Bayo-Hanza C, Esteva M, Borda E (2002) Therapeutic use of muscarinic acetylcholin receptor peptide to prevent mice chagasic cardiac dysfunction. J Mol Cell Cardiol 34:1645–1654
Dandel M, Wallukat G, Englert A, Lehmkuhl HB, Knosalla C, Hetzer R (2012) Long-term benefits of immunoadsorption in β(1)-adrenoceptor autoantibody-positive transplant candidates with dilated cardiomyopathy. Eur J Heart Fail 14:1374–1388
Dandel M, Wallukat G, Englert A, Hetzer R (2013) Immunoadsorption therapy for dilated cardiomyopathy and pulmonary arterial hypertension. Atherosclerosis 14(Suppl 1):203–211
Wallukat G, Reinke P, Dörffel WV, Luther HP, Bestvater K, Felix SB, Baumann G (1996) Removal of autoantibodies in dilated cardiomyopathy by immunoadsorption. Int J Cardiol 54:191–195
Dörffel WV, Felix SB, Wallukat G, Brehme S, Bestvater K, Hofmann T, Kleber FX, Baumann G, Reinke P (1997) Short-terme hemodynamic effects of immunoadsorption in dilated cardiomyopathy. Circulation 95:1994–1997
Baba A, Akaishi M, Shimada M, Monkawa T et al (2010) Complete elimination of cardiodepressant IgG3 autoantibodies by Immunoadsorption in patients with severe heart failure. Circ J 74:1372–1378
Herda LR, Trimpert C, Nauke U, Landsberger M, Hummel A, Beug D, Kieback A, Dörr M, Empen K, Knebel F, Ewert R, Angelow A, Hoffmann W, Felix SB, Staudt A (2010) Effects of immunoadsorption and subsequent immunoglobulin G substitutin on cardiopulmonary exercise capacity in patients with dilate cardiomyopathy. Am Heart J 159:809–816
Pokrowsky SN, Ezhov MV, Safarova MS, Saidova MA, Shitov VN, Afanasieva MI, Khaustov AI, Adamova IY, Afanasieva OI, Konovalov GA (2013) Ig apheresis for the treatment of severe DCM patients. Atherosclerosis 14(Suppl 1):213–218
Müller J, Wallukat G, Dandel M, Bieda H, Brandes K, Spiegelsberger S, Nissen E, Kunze R, Hetzer R (2000) Immunoglobulin adsorption in patients with dilated cardiomyopathy. Circulation 101:385–391
Schimke I, Müller J, Priem F, Kruse I, Schön B, Stein J, Kunze R, Wallukat G, Hetzer R (2001) Decreased oxidative stress in patients with idiopathic dilated cardiomyopathy one year after immunoglobulin adsorption. J Am Coll Cardiol 38:178–183
Schimke I, Müller J, Dandel M, Gremmels HD, Bayer W, Wallukat B, Wallukat G, Hetzer R (2005) Reduced oxidative stress in parallel to improved cardiac performance one year after selective removal of anti-beta 1-adrenoreceptor autoantibodies in patients with idiopathic dilated cardiomyopathy: data of a preliminary study. J Clin Apher 20:137–142
Hessel FP, Wegner C, Müller J, Glaveris C, Wasem J (2004) Economic evaluation and survival analysis of immunoglobulin adsorption in patients with idiopathic dilated cardiomyopathy. Eur J Health Econ 5:58–63
Dörffel WV, Wallukat G, Dörffel Y, Felix SB, Baumann G (2004) Immunoadsorption in dilated cardiomyopathy, a 3 year follow-up. Int J Cardiol 97:529–534
Trimpert C, Herda LR, Eckele LG, Pohle S, Müller C, Landsberger M, Felix SB, Staudt A (2010) Immunadsorption in dilated cardiomyopathy: long-term reduction of cardiodepressant antibodies. Eur J Clin Invest 40:685–691
Knebel F, Böhm M, Staudt A, Borges AC, Tepper M, Jochmann N, Wernecke KD, Felix S, Baumann G (2004) Reduction of morbidity by immunoadsorption therapy in patients with dilated cardiomyopathy. Int J Cardiol 97:517–520
Wallukat G, Müller J, Hetzer R (2002) Specific removal of beta1-adrenergic autoantibodies from patients with idiopathic dilated cardiomyopathy. N Engl J Med 347:1806
Labovsky V, Smulski CR, Gómez K, Levy G, Levin MJ (2007) Anti-beta1-adrenergic receptor autoantibodies in patients with chronic Chagas heart disease. Clin Exp Immunol 148:440–449
Wallukat G, Haberland A, Schimke I (2013) Letter to the editor: a vision of future treatment in Chagas’ heart disease. J Am Coll Cardiol. doi:10.1016/j.jacc.2013.08.1660
Wallukat G, Munoz-Saravia SG, Haberland A, Bartel S, Araujo R, Valda G, Duchen D, Ramirez ID, Borges AC, Schimke I (2010) Distinct pattern of autoantibodies against G-protein coupled receptors in Chagas’ cardiomyopathy and megacolon. J Am Coll Cardiol 55:463–468
Wallukat G, Dandel M, Müller J et al (2008) Agonistic autoantibodies against the endothelin 1 ETA and α1-adrenergic receptor in sera of patients with idiopathic pulmonary arterial hypertension. Circulation 108(Supp 2):S1072
Dandel M, Wallukat G, Englert A, Lehmkuhl H, Hetzer R (2009) Functional autoantibodies against G-protein coupled receptors in sera of patients with pulmonary arterial hypertension: potential involvement in the pathogenesis of the disease. J Am Coll Cardiol 53 (Suppl A454)
Wenzel K, Haase H, Wallukat G, Derer W, Bartel S, Hohmuth V, Herse F, Hubner N, Schulz H, Janczikowski M, Lindschau C, Schroeder C, Verlohren S, Morano I, Muller DN, Luft FC, Dietz R, Dechend R, Karczewski P (2008) Potential relevance of α1-adrenergic receptor autoantibodies in refractory hypertension. PLoS One 3(11):e3742
Jünnemann AGM, Kunze R, Bellios N, Wallukat G, Herrmann M, Rech J (2011) Stimulatory autoantibodies against beta2-adrenergic receptors in open-angle glaucoma IV: effect of immunoadsorption on antibody level and intraocular pressure. Eur J Ophthalmol. doi:10.5301/ejo.2011.7835
Doesch AO, Mueller S, Konstandin M, Celik S, Kristen A, Frankenstein L, Goeser S, Kaya Z, Zugck C, Dengler TJ, Katus HA (2010) Effects of protein A immunoadsorption in patients with chronic dilated cardiomyopathy. J Clin Apher 25:315–322
Nagatomo Y, Baba A, Ito H, Naito K, Yoshizawa A, Kurita Y, Nakamura I, Monkawa T, Matsubara T, Wakabayashi Y, Ogawa S, Akaishi M, Yoshikawa T (2011) Specific immunoadsorption therapy using a tryptophan column in patients with refractory heart failure due to dilated cardiomyopathy. J Clin Apher 26:1–8
Haberland A, Wallukat G, Schimke I (2011) Aptamer binding and neutralization of β1-adrenoceptore autoantibodies: basics and a vision of its future in cardiomyopathy treatment. Trends Cardiovasc Med 21:177–182
Marquis JK, Grindel JM (2000) Toxicological evaluation of oligonucleotide therapeutics. Curr Opin Mol Ther 2:258–263
Dahmen C, Haberland A, Kage A, Schimke I, Wallukat G (2011) Aptamers that inhibit interaction between antibody and 2nd extracellular loop of human beta-1-adrenergic receptor. PCT/EP2011/060572, WO2012000889 A1
Schimke I, Haberland A, Wallukat G (2012) Use of aptamers in therapy and/or diagnosis of autoimmune diseases. EP2497828A1, WO2012119938A2
Wallukat G, Haberland A, Berg S, Schulz A, Freyse EJ, Dahmen C, Kage A, Dandel M, Vetter R, Salzsieder E, Kreutz R, Schimke I (2012) The first Aptamer-apheresis column specifically for clearing blood of β1-receptor autoantibodies. Circ J 76:2449–2455
Münch G, Boivin-Jahns V, Holthoff HP, Adler K, Lappo M, Truöl S, Degen H, Steiger N, Lohse MJ, Jahns R, Ungerer M (2012) Administration of the cylclic peptide COR-1 in humans (phaseI study): ex vivo measurements of anti-β1-adrenergic receptor antibody neutralization and immune parameters. Eur J Heart Fail 14:1230–1239
Nikolaev VO, Boivin V, Störk S, Angermann CE, Ertl G, Lohse MJ, Jahns R (2007) A novel fluorescence method for the rapid detection of functional beta1-adrenergic receptor autoantibodies in heart failure. J Am Coll Cardiol 50:423–431
Matsui S, Fu ML, Shimizu M, Fukuoka T, Teraoka K, Takekoshi N, Murakami E, Hjalmarson A (1995) Dilated cardiomyopathy defines serum autoantibodies against G-protein coupled cardiovascular receptors. Autoimmunity 21:85–88
Jahns R, Boivin V, Siegmund C, Inselmann G, Lohse MJ, Boege F (1999) Autoantibodies activating human β1-adrenergic receptors are associated with reduced cardiac function in chronic heart failure. Circulation 99:649–654
Holthoff HP, Zeisig S, Jahns-Boivin V, Bauer J, Lohse MJ, Kääb S, Clauss S, Jahns R, Schlipp A, Münch G, Ungerer M (2012) Detection of anti β1-AR autoantibodies in heart failure by a cell-based competition ELISA. Circ Res 111:675–684
Wallukat G, Wollenberger A, Morwinski R, Pitschner HF (1995) Anti-β1-adrenoceptor autoantibodies with chronotropic activity from the serum of patients with dilated cardiomyopathy: mapping of epitopes in the first and second extracellular loops. J Mol Cell Cardiol 27:397–406
Förster OAEM (2007) Peripartum cardiomyopathy—an autoimmune disease. Thesis, Faculty of Health Sciences, Univ Witwatersrand, Johannesburg
Chiale PA, Rosenbaum MB, Elizari MV, Hjalmarson Å, Magnusson Y, Wallukat G, Hoebeke J (1995) High prevalence of antibodies against beta1- and beta2-adrenoceptors in patients with primary electrical abnormalities. J Am Coll Cardiol 26:864–869
Brisinda D, Sorbo AR, Venuti A, Ruggieri MP, Manna R, Fenici P, Wallukat G, Hoebeke J, Frustaci A, Fenici R (2012) Anti-β-adrenoceptor autoimmunity causing idiopathic arrhythmias and cardiomyopathy. Circ J 76:1345–1353
Iwata M, Yoshikawa T, Baba A, Anzai T, Mitamura H, Ogawa S (2001) Autoantibodies against the second extracellular loop of the β1-adrenergic receptor predict ventricular tachycardia and sudden death in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol 37:418–424
Segovia M, Ganzinelli S, Reina E, Borda E, Sterin-Borda L (2012) Role of anti-β1 adrenergic antibodies from patients with periodontitis in cardiac dysfunction. J Oral Pathol Med 41(3):242–248
Reina S, Ganzinelli S, Sterin-Borda L, Borda E (2012) Pro-apoptotic effect af anti-β1-adrenergic receptor antibodies in periodontitis patients. Int Immunopharmacol 14:710–721
Sterin- Borda L, Perez LC, Wald M, Cremaschi G, Borda E (1988) Antibodies to beta1 and beta2 adrenoceptors in Chagas’ disease. Clin Exp Immunol 74:349–354
Goin JC, Borda E, Leiros CP, Storino R, Sterin-Borda (1994) Identification of antibodies with muscarinic cholinergic activity in human Chagas’ disease. J Auton Nerv Syst 47:45–52
Borda E, Sterin-Borda L (1996) Antiadrenergic and muscarinic receptor antibodies in Chagas cardiomyopathy. Int J Cardiol 56:149–156
Muñoz Saravia SG, Haberland A, Bartel S, Araujo R, Valda G, Duchen D, Diaz Ramirez I, Borges AC, Wallukat G, Schimke I (2010) Distinct patterns of autoantibodies against G-protein-coupled receptors in Chagas’ cardiomyopathy and megacolon: their potential impact for early risk assessment in asymptomatic Chagas’ patients. J Am Coll Cardiol 56(6):526–527
Kunze R, Wallukat G, Rosenthal P, Straube R (2009) Peptides have binding affinities to an antibody which recognize an epitope on an α1-loop2 and β2-loop1 of an adrenoceptor. WO/2009/090227, EP 2244718-AZ
Karczewski P, Hempel P, Kunze R, Bimmler M (2012) Agonistic autoantibodies to the α1-adrenergic and the β2-adrenergic receptor in Alzheimer’s and vascular dementia. Scand J Immunol 75:524–530
Kohr D, Singh P, Tschernatsch M, Kaps M et al (2011) Autoimmunity against the β2 adrenergic receptor and muscarinic M2 receptor in complex regional pain syndrome. Pain 152:2690–2700
Fu ML, Herlitz H, Wallukat G, Hilme E, Hedner T, Hoebeke J et al (1994) Functional autoimmune epitope on alpha1-adrenergic receptors in patients with malignant hypertension. Lancet 344:1660–1663
Luther HP, Homuth V, Wallukat G (1997) Alpha1-adrenergic receptor antibodies in patients with primary hypertension. Hypertension 29:678–682
Hempel P, Karczewski P, Kohnert J et al (2009) Sera of patients with type2 diabetes contain agonistic autoantibodies against G-protein coupled receptors. Scand J Immunol 70:159–160
Karczewski P, Haase H, Hempel P, Bimmler M (2010) Agonistic antibody to the alpha1-adrenergic receptor mobilizes intracellular calcium and induces phosphorylation of a cardiac 15-kDa protein. Mol Cell Biol 333:233–242
Karczewski P, Pohlmann A, Wagenhaus B, Wisbrun N, Hempel P, Lemke B, Kunze R, Niendorf T, Bimmler M (2012) Antibodies to the α1-adrenergic receptor cause vascular impairments in the rat brain as demonstrated by magnetic resonanze angiography. PLoS One 7(7):e 41602
Haberland A, Santos RAS, Schimke I, Wallukat G (2013) Are agonistic autoantibodies against G-protein coupled receptors involved in the development of long-term side effects of tumor chemotherapy? Case Rep Oncol 6:104–108
Wallukat G, Homuth V, Fischer T, Lindschau C, Horstkamp B, Jüpner A, Baur E, Nissen E, Vetter K, Neichel D, Dudenhausen JW, Haller H, Luft FC (1999) Patients with preeclampsia develop agonistic autoantibodies against the angiotensin AT1 receptor. J Clin Invest 103:945–952
Dechend R, Homuth V, Wallukat G, Kreuzer J, Park JK, Theuer J, Juepner A, Gulba DC, Mackman N, Haller H, Luft FC (2000) AT(1) receptor agonistic antibodies from preeclamptic patients cause vascular cells to express tissue factor. Circulation 101:2382–2387
Dechend R, Viedt C, Müller DN, Ugele B, Brandes RP, Wallukat G, Park JK, Janke J, Barta P, Theuer J, Fiebeler A, Homuth V, Dietz R, Haller H, Kreuzer J, Luft FC (2003) AT1 receptor agonistic antibodies from preeclamptic patients stimulate NADPH oxidase. Circulation 107:1632–1639
Bobst SM, Day MC, Gilstrap LC, Xia Y, Kellems RE (2005) Maternal autoantibodies from preeclamptic patients activate angiotensin receptor on human mesangial cells and induce interleukin-6 and plasminogen activator inhibitor-I secretion. Am J Hypertens 18:330–336
Dörffel Y, Wallukat G, Bochnig N, Homuth V, Herberg M, Dörffel W, Pruss A, Chaoui R, Scholze J (2003) Agonistic AT1 receptor autoantibodies and monocyte stimulation in hypertensive patients. Am J Hypertens 16:827–833
Fu MLX, Herlitz H, Schulze W, Wallukat G, Micke P, Eftekhari P, Sjögren KG, Hjalmarson Å, Müller-Esterl W, Hoebeke J (2000) Autoantibodies against the angiotensin receptor (AT1) in patients with hypertension. J Hypertens 18:945–953
Dragun D, Müller DM, Bräsen JH, Fritsche L, Nieminen-Kelhä M, Dechend R, Kintscher U, Rudolph B, Hoebeke J, Eckert D, Mazak I, Plehm R, Schönemann C, Unger T, Budde K, Neumayer HH, Luft FC, Wallukat G (2005) Angiotensin II type receptor activating antibodies in renal-allograft rejection. N Engl J Med 352:558–569
Fu ML (1996) Anti-M2 muscarinic receptor autoantibodies and idiopathic dilated cardiomyopathy. Int J Cardiol 54:127–135
Wallukat G, Nissen E, Morwinski R, Müller J (2000) Autoantibodies against the beta-and muscarinic receptors in cardiomyopathy. Herz 25:261–266
Goin JC, Leiros CP, Borda E, Sterin-Borda (1997) Interaction of human chagasic IgG with the second extracellular loop of the human muscarinic acetylcholine receptor: functional and pathological implication. FASEB J 11:77–83
Koo NY, Hwang SM, Choi SY, Kim B, Kho HS, Choi SY, Song YW, Park K (2008) Functional epitope of muscarinic type 3 receptor which interact with autoantibodies from Sjörgren’s syndrome patients. Rheumatology 47:828–833
Jin M, Hwang SM, Koo NY, Kim B, Kho HS, Choi SY, Song YW, Park K (2012) Autoantibodies in Sjörgren’s syndrome patients acutely inhibit muscarinic receptor function. Oral Dis 18:132–139
Lee BH, Gauna AE, Perez G, Park YJ, Pauley KM, Kawai T, Cha S (2013) Autoantibodies against muscarinic type 3 receptor in Sjörgren’s syndrome inhibit aquaporin 5 trafficking. PLoS One 8(1):e53113
Berg CP, Blume K, Lauber K, Gregor M, Berg PA, Wesselborg S, Stein GM (2010) Antibodies to muscarinic acetylcholine receptors found in patients with primary billary cirrhosis. BMC Gastroenterol 10:120
Li H, Kem DC, Reim S, Khan M, Vanderlinde-Wood M, Zillner C, Collier D, Liles C, Hill MA, Cunningham MW, Aston CE, Yu X (2012) Agonistic autoantibodies as vasodilators in orthostatic hypotension: a new mechanism. Hypertension 59(2):402–408
Lombardi MG, Nergroni MP, Pelegrina LT, Castro ME, Fiszman GL, Azar ME, Morgado CC, Sales ME (2013) Autoantibodies against muscarinic receptors in breast cancer: their role in tumor angiogenesis. PLoS One 8(2):e57572
Negroni MP, Fiszman GL, Azar ME, Morgado CC, Español AJ, Pelegrina LT, de la Torre E, Sales ME (2010) Immunoglobulin G from breast cancer patients in stage I stimulates muscarinic acetylcholine receptor in MCF7 cells and induces proliferation. Participation of nitric oxide synthase-derived nitric oxide. J Clin Immunol 30:474–484
Fiszman G, Cattaneo V, de la Torre E, Español A, Colombo L, Sacerdote de Lustig E, Sales ME (2006) Muscarinic receptors autoantibodies purified from mammary adenocarcinoma-bearing mice sera stimulate tumor progression. Int Immunopharmacol 6:1323–1330
Riemekasten G, Phillippe A, Näther M, Slowinski T, Müller DN, Heidecke H, Matucci-Cerinic M, Czirják L, Lukitsch I, Becker M, Kill A, van Laar JM, Catar R, Luft FC, Burmester GR, Hegner B, Dragun D (2011) Involvement of functional autoantibodies against vascular receptors in systemic sclerosis. Ann Rheum Dis 70:530–536
Eftekhari P, Salle L, Lezoualc’h F, Mialet J, Gastineau M, Briand JP, Isenberg DA, Fournié GJ, Argibay J, Fischmeister R, Muller S, Hoebeke J (2000) Anti SSA/Ro52 autoantibodies blocking the cardiac 5HT4 serotoninergic receptor could explain neonatal lupus congenital heart block. Eur J Immunol 30:2782–2790
Kamel R, Eftekhari P, Clancy R, Buyon JP, Hoebeke J (2005) Autoantibodies against the serotoninergic 5HT4 receptor and congenital heart block. J Autoimmun 25:72–76
Author information
Authors and Affiliations
Corresponding author
Additional information
This article is a contribution to the special issue on B cell-mediated autoimmune diseases - Guest Editors: Thomas Winkler and Reinhard Voll
Rights and permissions
About this article
Cite this article
Wallukat, G., Schimke, I. Agonistic autoantibodies directed against G-protein-coupled receptors and their relationship to cardiovascular diseases. Semin Immunopathol 36, 351–363 (2014). https://doi.org/10.1007/s00281-014-0425-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00281-014-0425-9