Skip to main content

Advertisement

Log in

Neutrophils in innate and adaptive immunity

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Neutrophils have long been viewed as short-lived cells crucial for the elimination of extracellular pathogens, possessing a limited role in the orchestration of the immune response. This dogma has been challenged by recent lines of evidence demonstrating the expression of an increasing number of cytokines and effector molecules by neutrophils. Moreover, in analogy with their “big brother” macrophages, neutrophils integrate the environmental signals and can be polarized towards an antitumoural or protumoural phenotype. Neutrophils are a major source of humoral fluid phase pattern recognition molecules and thus contribute to the humoral arm of innate immunity. Neutrophils cross talk and shape the maturation and effector functions of other leukocytes in a direct or indirect manner, through cell–cell contact or cytokine production, respectively. Therefore, neutrophils are integrated in the activation and regulation of the innate and adaptive immune system and play an important role in the resolution or exacerbation of diverse pathologies, including infections, chronic inflammation, autoimmunity and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Borregaard N (2010) Neutrophils, from marrow to microbes. Immunity 33(5):657–670

    Article  PubMed  CAS  Google Scholar 

  2. Mantovani A, Cassatella MA, Costantini C, Jaillon S (2011) Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 11(8):519–531

    Article  PubMed  CAS  Google Scholar 

  3. Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A (2012) Neutrophil function: from mechanisms to disease. Annu Rev Immunol 30:459–489. doi:10.1146/annurev-immunol-020711-074942

    Article  PubMed  CAS  Google Scholar 

  4. Jaeger BN, Donadieu J, Cognet C, Bernat C, Ordonez-Rueda D et al (2012) Neutrophil depletion impairs natural killer cell maturation, function, and homeostasis. J Exp Med 209(3):565–580. doi:10.1084/jem.20111908

    Article  PubMed  CAS  Google Scholar 

  5. Costantini C, Calzetti F, Perbellini O, Micheletti A, Scarponi C et al (2011) Human neutrophils interact with both 6-sulfo LacNAc+ DC and NK cells to amplify NK-derived IFN{gamma}: role of CD18, ICAM-1, and ICAM-3. Blood 117(5):1677–1686. doi:10.1182/blood-2010-06-287243

    Article  PubMed  CAS  Google Scholar 

  6. Costantini C, Micheletti A, Calzetti F, Perbellini O, Pizzolo G et al (2010) Neutrophil activation and survival are modulated by interaction with NK cells. Int Immunol 22(10):827–838. doi:10.1093/intimm/dxq434

    Article  PubMed  CAS  Google Scholar 

  7. Griffin GK, Newton G, Tarrio ML, Bu DX, Maganto-Garcia E et al (2012) IL-17 and TNF-alpha sustain neutrophil recruitment during inflammation through synergistic effects on endothelial activation. J Immunol 188(12):6287–6299. doi:10.4049/jimmunol.1200385

    Article  PubMed  CAS  Google Scholar 

  8. Cua DJ, Tato CM (2010) Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol 10(7):479–489

    Article  PubMed  CAS  Google Scholar 

  9. Pelletier M, Maggi L, Micheletti A, Lazzeri E, Tamassia N et al (2010) Evidence for a cross-talk between human neutrophils and Th17 cells. Blood 115(2):335–343. doi:10.1182/blood-2009-04-216085

    Article  PubMed  CAS  Google Scholar 

  10. Bottazzi B, Doni A, Garlanda C, Mantovani A (2010) An integrated view of humoral innate immunity: pentraxins as a paradigm. Annual Rev Immunol 28:157–183

    Google Scholar 

  11. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140(6):805–820

    Article  PubMed  CAS  Google Scholar 

  12. Nathan C (2006) Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 6(3):173–182

    Article  PubMed  CAS  Google Scholar 

  13. Segal AW (2005) How neutrophils kill microbes. Annu Rev Immunol 23:197–223

    Article  PubMed  CAS  Google Scholar 

  14. Hayashi F, Means TK, Luster AD (2003) Toll-like receptors stimulate human neutrophil function. Blood 102(7):2660–2669

    Article  PubMed  CAS  Google Scholar 

  15. Berger M, Hsieh CY, Bakele M, Marcos V, Rieber N et al (2012) Neutrophils express distinct RNA receptors in a non-canonical way. J Biol Chem 287(23):19409–19417. doi:10.1074/jbc.M112.353557

    Article  PubMed  CAS  Google Scholar 

  16. Kennedy AD, Willment JA, Dorward DW, Williams DL, Brown GD et al (2007) Dectin-1 promotes fungicidal activity of human neutrophils. Eur J Immunol 37(2):467–478

    Article  PubMed  CAS  Google Scholar 

  17. Kerrigan AM, Dennehy KM, Mourao-Sa D, Faro-Trindade I, Willment JA et al (2009) CLEC-2 is a phagocytic activation receptor expressed on murine peripheral blood neutrophils. J Immunol 182(7):4150–4157

    Article  PubMed  CAS  Google Scholar 

  18. Lee WB, Kang JS, Yan JJ, Lee MS, Jeon BY et al (2012) Neutrophils promote mycobacterial trehalose dimycolate-induced lung inflammation via the mincle pathway. PLoS Pathog 8(4):e1002614. doi:10.1371/journal.ppat.1002614

    Article  PubMed  CAS  Google Scholar 

  19. Graham LM, Gupta V, Schafer G, Reid DM, Kimberg M et al (2012) The C-type lectin receptor CLECSF8 (CLEC4D) is expressed by myeloid cells and triggers cellular activation through Syk kinase. J Biol Chem 287(31):25964–25974. doi:10.1074/jbc.M112.384164

    Article  PubMed  CAS  Google Scholar 

  20. Clarke TB, Davis KM, Lysenko ES, Zhou AY, Yu Y et al (2010) Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med 16(2):228–231

    Article  PubMed  CAS  Google Scholar 

  21. Tamassia N, Bazzoni F, Le Moigne V, Calzetti F, Masala C et al (2012) IFN-beta expression is directly activated in human neutrophils transfected with plasmid DNA and is further increased via TLR-4-mediated signaling. J Immunol 189(3):1500–1509. doi:10.4049/jimmunol.1102985

    Article  PubMed  CAS  Google Scholar 

  22. Tamassia N, Le Moigne V, Rossato M, Donini M, McCartney S et al (2008) Activation of an immunoregulatory and antiviral gene expression program in poly(I:C)-transfected human neutrophils. J Immunol 181(9):6563–6573

    PubMed  CAS  Google Scholar 

  23. Greenblatt MB, Aliprantis A, Hu B, Glimcher LH (2010) Calcineurin regulates innate antifungal immunity in neutrophils. J Exp Med 207(5):923–931

    Article  PubMed  CAS  Google Scholar 

  24. Mankan AK, Dau T, Jenne D, Hornung V (2012) The NLRP3/ASC/Caspase-1 axis regulates IL-1beta processing in neutrophils. Eur J Immunol 42(3):710–715. doi:10.1002/eji.201141921

    Article  PubMed  CAS  Google Scholar 

  25. Anand PK, Malireddi RK, Lukens JR, Vogel P, Bertin J et al (2012) NLRP6 negatively regulates innate immunity and host defence against bacterial pathogens. Nature 488(7411):389–393. doi:10.1038/nature11250

    Article  PubMed  CAS  Google Scholar 

  26. Tamassia N, Le Moigne V, Calzetti F, Donini M, Gasperini S et al (2007) The MyD88-independent pathway is not mobilized in human neutrophils stimulated via TLR4. J Immunol 178(11):7344–7356

    PubMed  CAS  Google Scholar 

  27. Liu X, Ma B, Malik AB, Tang H, Yang T et al (2012) Bidirectional regulation of neutrophil migration by mitogen-activated protein kinases. Nat Immunol 13(5):457–464. doi:10.1038/ni.2258

    Article  PubMed  CAS  Google Scholar 

  28. McDonald B, Pittman K, Menezes GB, Hirota SA, Slaba I et al (2010) Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science (New York, NY) 330(6002):362–366. doi:10.1126/science.1195491

    Article  CAS  Google Scholar 

  29. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T et al (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464(7285):104–107

    Article  PubMed  CAS  Google Scholar 

  30. Jaillon S, Peri G, Delneste Y, Fremaux I, Doni A et al (2007) The humoral pattern recognition receptor PTX3 is stored in neutrophil granules and localizes in extracellular traps. J Exp Med 204(4):793–804

    Article  PubMed  CAS  Google Scholar 

  31. Moalli F, Jaillon S, Inforzato A, Sironi M, Bottazzi B et al (2011) Pathogen recognition by the long pentraxin PTX3. J Biomed Biotechnol 2011:830421

    Article  PubMed  CAS  Google Scholar 

  32. Moalli F, Doni A, Deban L, Zelante T, Zagarella S et al (2010) Role of complement and Fc{gamma} receptors in the protective activity of the long pentraxin PTX3 against Aspergillus fumigatus. Blood 116(24):5170–5180

    Article  PubMed  CAS  Google Scholar 

  33. Jaillon S, Jeannin P, Hamon Y, Fremaux I, Doni A et al (2009) Endogenous PTX3 translocates at the membrane of late apoptotic human neutrophils and is involved in their engulfment by macrophages. Cell Death Differ 16(3):465–474

    Article  PubMed  CAS  Google Scholar 

  34. Deban L, Russo RC, Sironi M, Moalli F, Scanziani M et al (2010) Regulation of leukocyte recruitment by the long pentraxin PTX3. Nat Immunol 11(4):328–334

    Article  PubMed  CAS  Google Scholar 

  35. Dziarski R, Platt KA, Gelius E, Steiner H, Gupta D (2003) Defect in neutrophil killing and increased susceptibility to infection with nonpathogenic Gram-positive bacteria in peptidoglycan recognition protein-S (PGRP-S)-deficient mice. Blood 102(2):689–697

    Article  PubMed  CAS  Google Scholar 

  36. Rorvig S, Honore C, Larsson LI, Ohlsson S, Pedersen CC et al (2009) Ficolin-1 is present in a highly mobilizable subset of human neutrophil granules and associates with the cell surface after stimulation with fMLP. J Leukoc Biol 86(6):1439–1449

    Article  PubMed  CAS  Google Scholar 

  37. Cho JH, Fraser IP, Fukase K, Kusumoto S, Fujimoto Y et al (2005) Human peptidoglycan recognition protein S is an effector of neutrophil-mediated innate immunity. Blood 106(7):2551–2558

    Article  PubMed  CAS  Google Scholar 

  38. Kashyap DR, Wang M, Liu LH, Boons GJ, Gupta D et al (2011) Peptidoglycan recognition proteins kill bacteria by activating protein-sensing two-component systems. Nat Med 17(6):676–683. doi:10.1038/nm.2357

    Article  PubMed  CAS  Google Scholar 

  39. Moreno-Amaral AN, Gout E, Danella-Polli C, Tabarin F, Lesavre P et al (2012) M-ficolin and leukosialin (CD43): new partners in neutrophil adhesion. J Leukoc Biol 91(3):469–474. doi:10.1189/jlb.0911460

    Article  PubMed  CAS  Google Scholar 

  40. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y et al (2004) Neutrophil extracellular traps kill bacteria. Science (New York, NY) 303(5663):1532–1535

    Article  CAS  Google Scholar 

  41. Yousefi S, Mihalache C, Kozlowski E, Schmid I, Simon HU (2009) Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ 16(11):1438–1444

    Article  PubMed  CAS  Google Scholar 

  42. Saitoh T, Komano J, Saitoh Y, Misawa T, Takahama M et al (2012) Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe 12(1):109–116. doi:10.1016/j.chom.2012.05.015

    Article  PubMed  CAS  Google Scholar 

  43. Douda DN, Jackson R, Grasemann H, Palaniyar N (2011) Innate immune collectin surfactant protein D simultaneously binds both neutrophil extracellular traps and carbohydrate ligands and promotes bacterial trapping. J Immunol 187(4):1856–1865. doi:10.4049/jimmunol.1004201

    Article  PubMed  CAS  Google Scholar 

  44. Menegazzi R, Decleva E, Dri P (2012) Killing by neutrophil extracellular traps: fact or folklore? Blood 119(5):1214–1216. doi:10.1182/blood-2011-07-364604

    Article  PubMed  CAS  Google Scholar 

  45. Parker H, Albrett AM, Kettle AJ, Winterbourn CC (2012) Myeloperoxidase associated with neutrophil extracellular traps is active and mediates bacterial killing in the presence of hydrogen peroxide. J Leukoc Biol 91(3):369–376. doi:10.1189/jlb.0711387

    Article  PubMed  CAS  Google Scholar 

  46. Yipp BG, Petri B, Salina D, Jenne CN, Scott BN et al (2012) Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med 18:1386–1393. doi:10.1038/nm.2847

    Article  PubMed  CAS  Google Scholar 

  47. Hakkim A, Fuchs TA, Martinez NE, Hess S, Prinz H et al (2011) Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation. Nat Chem Biol 7(2):75–77

    Article  PubMed  CAS  Google Scholar 

  48. McInturff AM, Cody MJ, Elliott EA, Glenn JW, Rowley JW et al (2012) Mammalian target of rapamycin regulates neutrophil extracellular trap formation via induction of hypoxia-inducible factor 1 alpha. Blood 120:3118–3125. doi:10.1182/blood-2012-01-405993

    Article  PubMed  CAS  Google Scholar 

  49. Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I et al (2007) Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 176(2):231–241

    Article  PubMed  CAS  Google Scholar 

  50. Remijsen Q, Vanden Berghe T, Wirawan E, Asselbergh B, Parthoens E et al (2011) Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Res 21(2):290–304

    Article  PubMed  CAS  Google Scholar 

  51. Li P, Li M, Lindberg MR, Kennett MJ, Xiong N et al (2010) PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med 207(9):1853–1862

    Article  PubMed  CAS  Google Scholar 

  52. Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A (2010) Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 191(3):677–691

    Article  PubMed  CAS  Google Scholar 

  53. Metzler KD, Fuchs TA, Nauseef WM, Reumaux D, Roesler J et al (2011) Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity. Blood 117(3):953–959

    Article  PubMed  CAS  Google Scholar 

  54. Marcos V, Nussbaum C, Vitkov L, Hector A, Wiedenbauer EM et al (2009) Delayed but functional neutrophil extracellular trap formation in neonates. Blood 114(23):4908–4911, author reply 4911–4902

    Article  PubMed  CAS  Google Scholar 

  55. Yost CC, Cody MJ, Harris ES, Thornton NL, McInturff AM et al (2009) Impaired neutrophil extracellular trap (NET) formation: a novel innate immune deficiency of human neonates. Blood 113(25):6419–6427

    Article  PubMed  CAS  Google Scholar 

  56. Gabriel C, McMaster WR, Girard D, Descoteaux A (2010) Leishmania donovani promastigotes evade the antimicrobial activity of neutrophil extracellular traps. J Immunol 185(7):4319–4327

    Article  PubMed  CAS  Google Scholar 

  57. Wartha F, Beiter K, Albiger B, Fernebro J, Zychlinsky A et al (2007) Capsule and d-alanylated lipoteichoic acids protect Streptococcus pneumoniae against neutrophil extracellular traps. Cell Microbiol 9(5):1162–1171

    Article  PubMed  CAS  Google Scholar 

  58. Beiter K, Wartha F, Albiger B, Normark S, Zychlinsky A et al (2006) An endonuclease allows Streptococcus pneumoniae to escape from neutrophil extracellular traps. Curr Biol 16(4):401–407

    Article  PubMed  CAS  Google Scholar 

  59. Buchanan JT, Simpson AJ, Aziz RK, Liu GY, Kristian SA et al (2006) DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps. Curr Biol 16(4):396–400

    Article  PubMed  CAS  Google Scholar 

  60. Young RL, Malcolm KC, Kret JE, Caceres SM, Poch KR et al (2011) Neutrophil extracellular trap (NET)-mediated killing of Pseudomonas aeruginosa: evidence of acquired resistance within the CF airway, independent of CFTR. PLoS One 6(9):e23637. doi:10.1371/journal.pone.0023637

    Article  PubMed  CAS  Google Scholar 

  61. Cassatella MA (1999) Neutrophil-derived proteins: selling cytokines by the pound. Adv Immunol 73:369–509

    Article  PubMed  CAS  Google Scholar 

  62. Guma M, Ronacher L, Liu-Bryan R, Takai S, Karin M et al (2009) Caspase 1-independent activation of interleukin-1beta in neutrophil-predominant inflammation. Arthritis Rheum 60(12):3642–3650. doi:10.1002/art.24959

    Article  PubMed  CAS  Google Scholar 

  63. Rinchai D, Khaenam P, Kewcharoenwong C, Buddhisa S, Pankla R et al (2012) Production of interleukin-27 by human neutrophils regulates their function during bacterial infection. Eur J Immunol 42:3280–3290. doi:10.1002/eji.201242526

    Article  PubMed  CAS  Google Scholar 

  64. Scapini P, Bazzoni F, Cassatella MA (2008) Regulation of B-cell-activating factor (BAFF)/B lymphocyte stimulator (BLyS) expression in human neutrophils. Immunol Lett 116(1):1–6. doi:10.1016/j.imlet.2007.11.009

    Article  PubMed  CAS  Google Scholar 

  65. Puga I, Cols M, Barra CM, He B, Cassis L et al (2012) B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen. Nat Immunol 13(2):170–180. doi:10.1038/ni.2194

    Article  CAS  Google Scholar 

  66. Lefrancais E, Roga S, Gautier V, Gonzalez-de-Peredo A, Monsarrat B et al (2012) IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G. Proc Natl Acad Sci U S A 109(5):1673–1678. doi:10.1073/pnas.1115884109

    Article  PubMed  CAS  Google Scholar 

  67. Benabid R, Wartelle J, Malleret L, Guyot N, Gangloff S et al (2012) Neutrophil elastase modulates cytokine expression: contribution to host defense against Pseudomonas aeruginosa-induced pneumonia. J Biol Chem 287:34883–34894. doi:10.1074/jbc.M112.361352

    Article  PubMed  CAS  Google Scholar 

  68. Lin AM, Rubin CJ, Khandpur R, Wang JY, Riblett M et al (2011) Mast cells and neutrophils release IL-17 through extracellular trap formation in psoriasis. J Immunol 187(1):490–500. doi:10.4049/jimmunol.1100123

    Article  PubMed  CAS  Google Scholar 

  69. Moran EM, Heydrich R, Ng CT, Saber TP, McCormick J et al (2011) IL-17A expression is localised to both mononuclear and polymorphonuclear synovial cell infiltrates. PLoS One 6(8):e24048. doi:10.1371/journal.pone.0024048

    Article  PubMed  CAS  Google Scholar 

  70. Cassatella MA, Locati M, Mantovani A (2009) Never underestimate the power of a neutrophil. Immunity 31(5):698–700

    Article  PubMed  CAS  Google Scholar 

  71. De Santo C, Arscott R, Booth S, Karydis I, Jones M et al (2010) Invariant NKT cells modulate the suppressive activity of IL-10-secreting neutrophils differentiated with serum amyloid A. Nat Immunol 11(11):1039–1046

    Article  PubMed  CAS  Google Scholar 

  72. Davey MS, Tamassia N, Rossato M, Bazzoni F, Calzetti F et al (2011) Failure to detect production of IL-10 by activated human neutrophils. Nat Immunol 12(11):1017–1018. doi:10.1038/ni.2111, author reply 1018–1020

    Article  PubMed  CAS  Google Scholar 

  73. Tsuda Y, Takahashi H, Kobayashi M, Hanafusa T, Herndon DN et al (2004) Three different neutrophil subsets exhibited in mice with different susceptibilities to infection by methicillin-resistant Staphylococcus aureus. Immunity 21(2):215–226

    Article  PubMed  CAS  Google Scholar 

  74. Zhang X, Majlessi L, Deriaud E, Leclerc C, Lo-Man R (2009) Coactivation of Syk kinase and MyD88 adaptor protein pathways by bacteria promotes regulatory properties of neutrophils. Immunity 31(5):761–771. doi:10.1016/j.immuni.2009.09.016

    Article  PubMed  CAS  Google Scholar 

  75. Tosello Boari J, Amezcua Vesely MC, Bermejo DA, Ramello MC, Montes CL et al (2012) IL-17RA signaling reduces inflammation and mortality during Trypanosoma cruzi infection by recruiting suppressive IL-10-producing neutrophils. PLoS Pathog 8(4):e1002658. doi:10.1371/journal.ppat.1002658

    Article  PubMed  CAS  Google Scholar 

  76. Tamassia N, Zimmermann M, Castellucci M, Ostuni R, Bruderek K et al (2013) Cutting edge: an inactive chromatin configuration at the IL-10 locus in human neutrophils. J Immunol 190:1921–1925. doi:10.4049/jimmunol.1203022

    Article  PubMed  CAS  Google Scholar 

  77. Colotta F, Re F, Polentarutti N, Sozzani S, Mantovani A (1992) Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood 80(8):2012–2020

    PubMed  CAS  Google Scholar 

  78. Brandau S, Jakob M, Hemeda H, Bruderek K, Janeschik S et al (2010) Tissue-resident mesenchymal stem cells attract peripheral blood neutrophils and enhance their inflammatory activity in response to microbial challenge. J Leukoc Biol 88(5):1005–1015. doi:10.1189/jlb.0410207

    Article  PubMed  CAS  Google Scholar 

  79. Cassatella MA, Mosna F, Micheletti A, Lisi V, Tamassia N et al. (2011) Toll-like receptor-3-activated human mesenchymal stromal cells significantly prolong the survival and function of neutrophils. Stem Cells 29:1001–1011

    Google Scholar 

  80. van Gisbergen KP, Ludwig IS, Geijtenbeek TB, van Kooyk Y (2005) Interactions of DC-SIGN with Mac-1 and CEACAM1 regulate contact between dendritic cells and neutrophils. FEBS Lett 579(27):6159–6168

    Article  PubMed  CAS  Google Scholar 

  81. van Gisbergen KP, Sanchez-Hernandez M, Geijtenbeek TB, van Kooyk Y (2005) Neutrophils mediate immune modulation of dendritic cells through glycosylation-dependent interactions between Mac-1 and DC-SIGN. J Exp Med 201(8):1281–1292

    Article  PubMed  CAS  Google Scholar 

  82. Bennouna S, Bliss SK, Curiel TJ, Denkers EY (2003) Cross-talk in the innate immune system: neutrophils instruct recruitment and activation of dendritic cells during microbial infection. J Immunol 171(11):6052–6058

    PubMed  CAS  Google Scholar 

  83. Eken C, Gasser O, Zenhaeusern G, Oehri I, Hess C et al (2008) Polymorphonuclear neutrophil-derived ectosomes interfere with the maturation of monocyte-derived dendritic cells. J Immunol 180(2):817–824

    PubMed  CAS  Google Scholar 

  84. Gasser O, Schifferli JA (2004) Activated polymorphonuclear neutrophils disseminate anti-inflammatory microparticles by ectocytosis. Blood 104(8):2543–2548. doi:10.1182/blood-2004-01-0361

    Article  PubMed  CAS  Google Scholar 

  85. Davey MS, Lin CY, Roberts GW, Heuston S, Brown AC et al (2011) Human neutrophil clearance of bacterial pathogens triggers anti-microbial gammadelta T cell responses in early infection. PLoS Pathog 7(5):e1002040. doi:10.1371/journal.ppat.1002040

    Article  PubMed  CAS  Google Scholar 

  86. Himmel ME, Crome SQ, Ivison S, Piccirillo C, Steiner TS et al (2011) Human CD4+FOXP3+ regulatory T cells produce CXCL8 and recruit neutrophils. Eur J Immunol 41(2):306–312. doi:10.1002/eji.201040459

    Article  PubMed  CAS  Google Scholar 

  87. Pelletier M, Micheletti A, Cassatella MA (2010) Modulation of human neutrophil survival and antigen expression by activated CD4+ and CD8+ T cells. J Leukoc Biol 88(6):1163–1170. doi:10.1189/jlb.0310172

    Article  PubMed  CAS  Google Scholar 

  88. Abadie V, Badell E, Douillard P, Ensergueix D, Leenen PJ et al (2005) Neutrophils rapidly migrate via lymphatics after Mycobacterium bovis BCG intradermal vaccination and shuttle live bacilli to the draining lymph nodes. Blood 106(5):1843–1850. doi:10.1182/blood-2005-03-1281

    Article  PubMed  CAS  Google Scholar 

  89. Abi Abdallah DS, Egan CE, Butcher BA, Denkers EY (2011) Mouse neutrophils are professional antigen-presenting cells programmed to instruct Th1 and Th17 T-cell differentiation. Int Immunol 23(5):317–326

    Article  PubMed  CAS  Google Scholar 

  90. Beauvillain C, Cunin P, Doni A, Scotet M, Jaillon S et al (2011) CCR7 is involved in the migration of neutrophils to lymph nodes. Blood 117(4):1196–1204. doi:10.1182/blood-2009-11-254490

    Article  PubMed  CAS  Google Scholar 

  91. Beauvillain C, Delneste Y, Scotet M, Peres A, Gascan H et al (2007) Neutrophils efficiently cross-prime naive T cells in vivo. Blood 110(8):2965–2973

    Article  PubMed  CAS  Google Scholar 

  92. Chtanova T, Schaeffer M, Han SJ, van Dooren GG, Nollmann M et al (2008) Dynamics of neutrophil migration in lymph nodes during infection. Immunity 29(3):487–496. doi:10.1016/j.immuni.2008.07.012

    Article  PubMed  CAS  Google Scholar 

  93. Yang CW, Strong BS, Miller MJ, Unanue ER (2010) Neutrophils influence the level of antigen presentation during the immune response to protein antigens in adjuvants. J Immunol 185(5):2927–2934. doi:10.4049/jimmunol.1001289

    Article  PubMed  CAS  Google Scholar 

  94. Alfaro C, Suarez N, Onate C, Perez-Gracia JL, Martinez-Forero I et al (2011) Dendritic cells take up and present antigens from viable and apoptotic polymorphonuclear leukocytes. PLoS One 6(12):e29300. doi:10.1371/journal.pone.0029300

    Article  PubMed  CAS  Google Scholar 

  95. Morel C, Badell E, Abadie V, Robledo M, Setterblad N et al (2008) Mycobacterium bovis BCG-infected neutrophils and dendritic cells cooperate to induce specific T cell responses in humans and mice. Eur J Immunol 38(2):437–447. doi:10.1002/eji.200737905

    Article  PubMed  CAS  Google Scholar 

  96. Blomgran R, Ernst JD (2011) Lung neutrophils facilitate activation of naive antigen-specific CD4+ T cells during Mycobacterium tuberculosis infection. J Immunol 186(12):7110–7119. doi:10.4049/jimmunol.1100001

    Article  PubMed  CAS  Google Scholar 

  97. Blomgran R, Desvignes L, Briken V, Ernst JD (2012) Mycobacterium tuberculosis inhibits neutrophil apoptosis, leading to delayed activation of naive CD4 T cells. Cell Host Microbe 11(1):81–90. doi:10.1016/j.chom.2011.11.012

    Article  PubMed  CAS  Google Scholar 

  98. Ordonez-Rueda D, Jonsson F, Mancardi DA, Zhao W, Malzac A et al (2012) A hypomorphic mutation in the Gfi1 transcriptional repressor results in a novel form of neutropenia. Eur J Immunol 42(9):2395–2408. doi:10.1002/eji.201242589

    Article  PubMed  CAS  Google Scholar 

  99. Costantini C, Cassatella MA (2011) The defensive alliance between neutrophils and NK cells as a novel arm of innate immunity. J Leukoc Biol 89(2):221–233. doi:10.1189/jlb.0510250

    Article  PubMed  CAS  Google Scholar 

  100. Bhatnagar N, Hong HS, Krishnaswamy JK, Haghikia A, Behrens GM et al (2010) Cytokine-activated NK cells inhibit PMN apoptosis and preserve their functional capacity. Blood 116(8):1308–1316. doi:10.1182/blood-2010-01-264903

    Article  PubMed  CAS  Google Scholar 

  101. Thoren FB, Riise RE, Ousback J, Della Chiesa M, Alsterholm M et al (2012) Human NK cells induce neutrophil apoptosis via an NKp46- and Fas-dependent mechanism. J Immunol 188(4):1668–1674. doi:10.4049/jimmunol.1102002

    Article  PubMed  CAS  Google Scholar 

  102. Michel ML, Keller AC, Paget C, Fujio M, Trottein F et al (2007) Identification of an IL-17-producing NK1.1(neg) iNKT cell population involved in airway neutrophilia. J Exp Med 204(5):995–1001. doi:10.1084/jem.20061551

    Article  PubMed  CAS  Google Scholar 

  103. Emoto M, Emoto Y, Yoshizawa I, Kita E, Shimizu T et al (2010) Alpha-GalCer ameliorates listeriosis by accelerating infiltration of Gr-1+ cells into the liver. Eur J Immunol 40(5):1328–1341. doi:10.1002/eji.200939594

    Article  PubMed  CAS  Google Scholar 

  104. Wintermeyer P, Cheng CW, Gehring S, Hoffman BL, Holub M et al (2009) Invariant natural killer T cells suppress the neutrophil inflammatory response in a mouse model of cholestatic liver damage. Gastroenterology 136(3):1048–1059. doi:10.1053/j.gastro.2008.10.027

    Article  PubMed  CAS  Google Scholar 

  105. Wingender G, Hiss M, Engel I, Peukert K, Ley K et al (2012) Neutrophilic granulocytes modulate invariant NKT cell function in mice and humans. J Immunol 188(7):3000–3008. doi:10.4049/jimmunol.1101273

    Article  PubMed  CAS  Google Scholar 

  106. Cassatella MA (2006) On the production of TNF-related apoptosis-inducing ligand (TRAIL/Apo-2L) by human neutrophils. J Leukoc Biol 79(6):1140–1149. doi:10.1189/jlb.1005558

    Article  PubMed  CAS  Google Scholar 

  107. McGrath EE, Marriott HM, Lawrie A, Francis SE, Sabroe I et al (2011) TNF-related apoptosis-inducing ligand (TRAIL) regulates inflammatory neutrophil apoptosis and enhances resolution of inflammation. J Leukoc Biol 90(5):855–865. doi:10.1189/jlb.0211062

    Article  PubMed  CAS  Google Scholar 

  108. Conway KL, Goel G, Sokol H, Manocha M, Mizoguchi E et al (2012) p40phox expression regulates neutrophil recruitment and function during the resolution phase of intestinal inflammation. J Immunol 189(7):3631–3640. doi:10.4049/jimmunol.1103746

    Article  PubMed  CAS  Google Scholar 

  109. Serhan CN, Chiang N, Van Dyke TE (2008) Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 8(5):349–361

    Article  PubMed  CAS  Google Scholar 

  110. Chiang N, Fredman G, Backhed F, Oh SF, Vickery T et al (2012) Infection regulates pro-resolving mediators that lower antibiotic requirements. Nature 484(7395):524–528. doi:10.1038/nature11042

    Article  PubMed  CAS  Google Scholar 

  111. Spite M, Norling LV, Summers L, Yang R, Cooper D et al (2009) Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis. Nature 461(7268):1287–1291. doi:10.1038/nature08541

    Article  PubMed  CAS  Google Scholar 

  112. Krishnamoorthy S, Recchiuti A, Chiang N, Yacoubian S, Lee CH et al (2010) Resolvin D1 binds human phagocytes with evidence for proresolving receptors. Proc Natl Acad Sci U S A 107(4):1660–1665

    Article  PubMed  CAS  Google Scholar 

  113. Arita M, Ohira T, Sun YP, Elangovan S, Chiang N et al (2007) Resolvin E1 selectively interacts with leukotriene B4 receptor BLT1 and ChemR23 to regulate inflammation. J Immunol 178(6):3912–3917

    PubMed  CAS  Google Scholar 

  114. Serhan CN, Yang R, Martinod K, Kasuga K, Pillai PS et al (2009) Maresins: novel macrophage mediators with potent antiinflammatory and proresolving actions. J Exp Med 206(1):15–23. doi:10.1084/jem.20081880

    Article  PubMed  CAS  Google Scholar 

  115. Oh SF, Pillai PS, Recchiuti A, Yang R, Serhan CN (2011) Pro-resolving actions and stereoselective biosynthesis of 18S E-series resolvins in human leukocytes and murine inflammation. J Clin Invest 121(2):569–581. doi:10.1172/JCI42545

    Article  PubMed  CAS  Google Scholar 

  116. Jeannin P, Jaillon S, Delneste Y (2008) Pattern recognition receptors in the immune response against dying cells. Curr Opin Immunol 20(5):530–537

    Article  PubMed  CAS  Google Scholar 

  117. Filardy AA, Pires DR, Nunes MP, Takiya CM, Freire-de-Lima CG et al (2010) Proinflammatory clearance of apoptotic neutrophils induces an IL-12(low)IL-10(high) regulatory phenotype in macrophages. J Immunol 185(4):2044–2050

    Article  PubMed  CAS  Google Scholar 

  118. Dalli J, Serhan C (2012) Specific lipid mediator signatures of human phagocytes: microparticles stimulate macrophage efferocytosis and pro-resolving mediators. Blood 120:e60–e72. doi:10.1182/blood-2012-04-423525

    Article  PubMed  CAS  Google Scholar 

  119. El Kebir D, Gjorstrup P, Filep JG (2012) Resolvin E1 promotes phagocytosis-induced neutrophil apoptosis and accelerates resolution of pulmonary inflammation. Proc Natl Acad Sci U S A 109(37):14983–14988. doi:10.1073/pnas.1206641109

    Article  PubMed  CAS  Google Scholar 

  120. Ren Y, Xie Y, Jiang G, Fan J, Yeung J et al (2008) Apoptotic cells protect mice against lipopolysaccharide-induced shock. J Immunol 180(7):4978–4985

    PubMed  CAS  Google Scholar 

  121. Ariel A, Fredman G, Sun YP, Kantarci A, Van Dyke TE et al (2006) Apoptotic neutrophils and T cells sequester chemokines during immune response resolution through modulation of CCR5 expression. Nat Immunol 7(11):1209–1216

    Article  PubMed  CAS  Google Scholar 

  122. Cassatella MA, Meda L, Gasperini S, Calzetti F, Bonora S (1994) Interleukin 10 (IL-10) upregulates IL-1 receptor antagonist production from lipopolysaccharide-stimulated human polymorphonuclear leukocytes by delaying mRNA degradation. J Exp Med 179(5):1695–1699

    Article  PubMed  CAS  Google Scholar 

  123. Bourke E, Cassetti A, Villa A, Fadlon E, Colotta F et al (2003) IL-1 beta scavenging by the type II IL-1 decoy receptor in human neutrophils. J Immunol 170(12):5999–6005

    PubMed  CAS  Google Scholar 

  124. Steinwede K, Maus R, Bohling J, Voedisch S, Braun A et al (2012) Cathepsin G and neutrophil elastase contribute to lung-protective immunity against mycobacterial infections in mice. J Immunol 188(9):4476–4487. doi:10.4049/jimmunol.1103346

    Article  PubMed  CAS  Google Scholar 

  125. Berry MP, Graham CM, McNab FW, Xu Z, Bloch SA et al (2010) An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466(7309):973–977. doi:10.1038/nature09247

    Article  PubMed  CAS  Google Scholar 

  126. Nandi B, Behar SM (2011) Regulation of neutrophils by interferon-gamma limits lung inflammation during tuberculosis infection. J Exp Med 208(11):2251–2262. doi:10.1084/jem.20110919

    Article  PubMed  CAS  Google Scholar 

  127. Fridlender ZG, Albelda SM (2012) Tumor-associated neutrophils: friend or foe? Carcinogenesis 33(5):949–955. doi:10.1093/carcin/bgs123

    Article  PubMed  CAS  Google Scholar 

  128. Trevelin SC, Alves-Filho JC, Sonego F, Turato W, Nascimento DC et al (2012) Toll-like receptor 9 activation in neutrophils impairs chemotaxis and reduces sepsis outcome. Crit Care Med 40(9):2631–2637. doi:10.1097/CCM.0b013e318258fb70

    Article  PubMed  CAS  Google Scholar 

  129. Alves-Filho JC, Sonego F, Souto FO, Freitas A, Verri WA Jr et al (2010) Interleukin-33 attenuates sepsis by enhancing neutrophil influx to the site of infection. Nat Med 16(6):708–712

    Article  PubMed  CAS  Google Scholar 

  130. Le HT, Tran VG, Kim W, Kim J, Cho HR et al (2012) IL-33 priming regulates multiple steps of the neutrophil-mediated anti-Candida albicans response by modulating TLR and dectin-1 signals. J Immunol 189(1):287–295. doi:10.4049/jimmunol.1103564

    Article  PubMed  CAS  Google Scholar 

  131. Bian Z, Guo Y, Ha B, Zen K, Liu Y (2012) Regulation of the inflammatory response: enhancing neutrophil infiltration under chronic inflammatory conditions. J Immunol 188(2):844–853. doi:10.4049/jimmunol.1101736

    Article  PubMed  CAS  Google Scholar 

  132. Braber S, Thio M, Blokhuis BR, Henricks PA, Koelink PJ et al (2012) An association between neutrophils and immunoglobulin free light chains in the pathogenesis of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 185(8):817–824. doi:10.1164/rccm.201104-0761OC

    Article  PubMed  CAS  Google Scholar 

  133. Snelgrove RJ, Jackson PL, Hardison MT, Noerager BD, Kinloch A et al (2010) A critical role for LTA4H in limiting chronic pulmonary neutrophilic inflammation. Science (New York, NY) 330(6000):90–94. doi:10.1126/science.1190594

    Article  CAS  Google Scholar 

  134. Weathington NM, van Houwelingen AH, Noerager BD, Jackson PL, Kraneveld AD et al (2006) A novel peptide CXCR ligand derived from extracellular matrix degradation during airway inflammation. Nat Med 12(3):317–323. doi:10.1038/nm1361

    Article  PubMed  CAS  Google Scholar 

  135. Gaggar A, Jackson PL, Noerager BD, O'Reilly PJ, McQuaid DB et al (2008) A novel proteolytic cascade generates an extracellular matrix-derived chemoattractant in chronic neutrophilic inflammation. J Immunol 180(8):5662–5669

    PubMed  CAS  Google Scholar 

  136. Corti A, Franzini M, Cianchetti S, Bergamini G, Lorenzini E et al (2012) Contribution by polymorphonucleate granulocytes to elevated gamma-glutamyltransferase in cystic fibrosis sputum. PLoS One 7(4):e34772. doi:10.1371/journal.pone.0034772

    Article  PubMed  CAS  Google Scholar 

  137. Bennett L, Palucka AK, Arce E, Cantrell V, Borvak J et al (2003) Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med 197(6):711–723

    Article  PubMed  CAS  Google Scholar 

  138. Hakkim A, Furnrohr BG, Amann K, Laube B, Abed UA et al (2010) Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci U S A 107(21):9813–9818

    Article  PubMed  CAS  Google Scholar 

  139. Leffler J, Martin M, Gullstrand B, Tyden H, Lood C et al (2012) Neutrophil extracellular traps that are not degraded in systemic lupus erythematosus activate complement exacerbating the disease. J Immunol 188(7):3522–3531. doi:10.4049/jimmunol.1102404

    Article  PubMed  CAS  Google Scholar 

  140. Villanueva E, Yalavarthi S, Berthier CC, Hodgin JB, Khandpur R et al (2011) Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J Immunol 187(1):538–552. doi:10.4049/jimmunol.1100450

    Article  PubMed  CAS  Google Scholar 

  141. Garcia-Romo GS, Caielli S, Vega B, Connolly J, Allantaz F et al (2011) Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med 3(73):73ra20. doi:10.1126/scitranslmed.3001201

    Article  PubMed  Google Scholar 

  142. Lande R, Ganguly D, Facchinetti V, Frasca L, Conrad C et al (2011) Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci Transl Med 3(73):73ra19. doi:10.1126/scitranslmed.3001180

    Article  PubMed  Google Scholar 

  143. Dwivedi N, Upadhyay J, Neeli I, Khan S, Pattanaik D et al (2012) Felty’s syndrome autoantibodies bind to deiminated histones and neutrophil extracellular chromatin traps. Arthritis Rheum 64(4):982–992. doi:10.1002/art.33432

    Article  PubMed  CAS  Google Scholar 

  144. Denny MF, Yalavarthi S, Zhao W, Thacker SG, Anderson M et al (2010) A distinct subset of proinflammatory neutrophils isolated from patients with systemic lupus erythematosus induces vascular damage and synthesizes type I IFNs. J Immunol 184(6):3284–3297. doi:10.4049/jimmunol.0902199

    Article  PubMed  CAS  Google Scholar 

  145. Gomez-Puerta JA, Bosch X (2009) Anti-neutrophil cytoplasmic antibody pathogenesis in small-vessel vasculitis: an update. Am J Pathol 175(5):1790–1798

    Article  PubMed  CAS  Google Scholar 

  146. Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z et al (2007) Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 13(4):463–469

    Article  PubMed  CAS  Google Scholar 

  147. Xu J, Zhang X, Pelayo R, Monestier M, Ammollo CT et al (2009) Extracellular histones are major mediators of death in sepsis. Nat Med 15(11):1318–1321

    Article  PubMed  CAS  Google Scholar 

  148. 4Saffarzadeh M, Juenemann C, Queisser MA, Lochnit G, Barreto G et al (2012) Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS One 7(2):e32366. doi:10.1371/journal.pone.0032366

    Article  PubMed  CAS  Google Scholar 

  149. Kessenbrock K, Krumbholz M, Schonermarck U, Back W, Gross WL et al (2009) Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med 15(6):623–625

    Article  PubMed  CAS  Google Scholar 

  150. Hidalgo A, Chang J, Jang JE, Peired AJ, Chiang EY et al (2009) Heterotypic interactions enabled by polarized neutrophil microdomains mediate thromboinflammatory injury. Nat Med 15(4):384–391. doi:10.1038/nm.1939

    Article  PubMed  CAS  Google Scholar 

  151. Caudrillier A, Looney MR (2012) Platelet–neutrophil interactions as a target for prevention and treatment of transfusion-related acute lung injury. Curr Pharm Des 18(22):3260–3266

    Article  PubMed  CAS  Google Scholar 

  152. Thomas GM, Carbo C, Curtis BR, Martinod K, Mazo IB et al (2012) Extracellular DNA traps are associated with the pathogenesis of TRALI in humans and mice. Blood 119(26):6335–6343. doi:10.1182/blood-2012-01-405183

    Article  PubMed  CAS  Google Scholar 

  153. Massberg S, Grahl L, von Bruehl ML, Manukyan D, Pfeiler S et al (2010) Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med 16(8):887–896. doi:10.1038/nm.2184

    Article  PubMed  CAS  Google Scholar 

  154. Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M et al (2010) Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A 107(36):15880–15885

    Article  PubMed  CAS  Google Scholar 

  155. Demers M, Krause DS, Schatzberg D, Martinod K, Voorhees JR et al (2012) Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci U S A 109(32):13076–13081. doi:10.1073/pnas.1200419109

    Article  PubMed  CAS  Google Scholar 

  156. Brill A, Fuchs TA, Savchenko AS, Thomas GM, Martinod K et al (2012) Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost 10(1):136–144. doi:10.1111/j.1538-7836.2011.04544.x

    Article  PubMed  CAS  Google Scholar 

  157. Chou RC, Kim ND, Sadik CD, Seung E, Lan Y et al (2010) Lipid–cytokine–chemokine cascade drives neutrophil recruitment in a murine model of inflammatory arthritis. Immunity 33(2):266–278. doi:10.1016/j.immuni.2010.07.018

    Article  PubMed  CAS  Google Scholar 

  158. Wang JX, Bair AM, King SL, Shnayder R, Huang YF et al (2012) Ly6G ligation blocks recruitment of neutrophils via a beta2-integrin-dependent mechanism. Blood 120(7):1489–1498. doi:10.1182/blood-2012-01-404046

    Article  PubMed  CAS  Google Scholar 

  159. Elliott ER, Van Ziffle JA, Scapini P, Sullivan BM, Locksley RM et al (2011) Deletion of Syk in neutrophils prevents immune complex arthritis. J Immunol 187(8):4319–4330. doi:10.4049/jimmunol.1100341

    Article  PubMed  CAS  Google Scholar 

  160. Liu L, Belkadi A, Darnall L, Hu T, Drescher C et al (2010) CXCR2-positive neutrophils are essential for cuprizone-induced demyelination: relevance to multiple sclerosis. Nat Neurosci 13(3):319–326. doi:10.1038/nn.2491

    Article  PubMed  CAS  Google Scholar 

  161. Carlson T, Kroenke M, Rao P, Lane TE, Segal B (2008) The Th17-ELR+ CXC chemokine pathway is essential for the development of central nervous system autoimmune disease. J Exp Med 205(4):811–823. doi:10.1084/jem.20072404

    Article  PubMed  CAS  Google Scholar 

  162. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013

    Article  PubMed  CAS  Google Scholar 

  163. Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122(3):787–795. doi:10.1172/JCI59643

    Article  PubMed  CAS  Google Scholar 

  164. Kuang DM, Zhao Q, Wu Y, Peng C, Wang J et al. (2011) Peritumoral neutrophils link inflammatory response to disease progression by fostering angiogenesis in hepatocellular carcinoma. J Hepatol 54:948–955

    Google Scholar 

  165. Jensen HK, Donskov F, Marcussen N, Nordsmark M, Lundbeck F et al (2009) Presence of intratumoral neutrophils is an independent prognostic factor in localized renal cell carcinoma. J Clin Oncol 27(28):4709–4717

    Article  PubMed  Google Scholar 

  166. Wislez M, Rabbe N, Marchal J, Milleron B, Crestani B et al (2003) Hepatocyte growth factor production by neutrophils infiltrating bronchioloalveolar subtype pulmonary adenocarcinoma: role in tumor progression and death. Cancer Res 63(6):1405–1412

    PubMed  CAS  Google Scholar 

  167. Bellocq A, Antoine M, Flahault A, Philippe C, Crestani B et al (1998) Neutrophil alveolitis in bronchioloalveolar carcinoma: induction by tumor-derived interleukin-8 and relation to clinical outcome. Am J Pathol 152(1):83–92

    PubMed  CAS  Google Scholar 

  168. Rao HL, Chen JW, Li M, Xiao YB, Fu J et al (2012) Increased intratumoral neutrophil in colorectal carcinomas correlates closely with malignant phenotype and predicts patients’ adverse prognosis. PLoS One 7(1):e30806. doi:10.1371/journal.pone.0030806

    Article  PubMed  CAS  Google Scholar 

  169. Trellakis S, Bruderek K, Dumitru CA, Gholaman H, Gu X et al (2011) Polymorphonuclear granulocytes in human head and neck cancer: enhanced inflammatory activity, modulation by cancer cells and expansion in advanced disease. Int J Cancer 129(9):2183–2193. doi:10.1002/ijc.25892

    Article  PubMed  CAS  Google Scholar 

  170. Caruso RA, Bellocco R, Pagano M, Bertoli G, Rigoli L et al (2002) Prognostic value of intratumoral neutrophils in advanced gastric carcinoma in a high-risk area in northern Italy. Mod Pathol 15(8):831–837. doi:10.1097/01.MP.0000020391.98998.6B

    Article  PubMed  Google Scholar 

  171. Huh SJ, Liang S, Sharma A, Dong C, Robertson GP (2010) Transiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis development. Cancer Res 70(14):6071–6082

    Article  PubMed  CAS  Google Scholar 

  172. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G et al (2009) Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 16(3):183–194

    Article  PubMed  CAS  Google Scholar 

  173. Keeley EC, Mehrad B, Strieter RM (2010) CXC chemokines in cancer angiogenesis and metastases. Adv Cancer Res 106:91–111

    Article  PubMed  CAS  Google Scholar 

  174. Ijichi H, Chytil A, Gorska AE, Aakre ME, Bierie B et al (2011) Inhibiting Cxcr2 disrupts tumor-stromal interactions and improves survival in a mouse model of pancreatic ductal adenocarcinoma. J Clin Invest 121(10):4106–4117. doi:10.1172/JCI42754

    Article  PubMed  CAS  Google Scholar 

  175. Keane MP, Belperio JA, Xue YY, Burdick MD, Strieter RM (2004) Depletion of CXCR2 inhibits tumor growth and angiogenesis in a murine model of lung cancer. J Immunol 172(5):2853–2860

    PubMed  CAS  Google Scholar 

  176. Jamieson T, Clarke M, Steele CW, Samuel MS, Neumann J et al (2012) Inhibition of CXCR2 profoundly suppresses inflammation-driven and spontaneous tumorigenesis. J Clin Invest 122(9):3127–3144. doi:10.1172/JCI61067

    Article  PubMed  CAS  Google Scholar 

  177. Clark RA, Klebanoff SJ (1975) Neutrophil-mediated tumor cell cytotoxicity: role of the peroxidase system. J Exp Med 141(6):1442–1447

    Article  PubMed  CAS  Google Scholar 

  178. Pekarek LA, Starr BA, Toledano AY, Schreiber H (1995) Inhibition of tumor growth by elimination of granulocytes. J Exp Med 181(1):435–440

    Article  PubMed  CAS  Google Scholar 

  179. Houghton AM, Rzymkiewicz DM, Ji H, Gregory AD, Egea EE et al (2010) Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nat Med 16(2):219–223

    Article  PubMed  CAS  Google Scholar 

  180. Mittendorf EA, Alatrash G, Qiao N, Wu Y, Sukhumalchandra P et al (2012) Breast cancer cell uptake of the inflammatory mediator neutrophil elastase triggers an anticancer adaptive immune response. Cancer Res 72(13):3153–3162. doi:10.1158/0008-5472.CAN-11-4135

    Article  PubMed  CAS  Google Scholar 

  181. Queen MM, Ryan RE, Holzer RG, Keller-Peck CR, Jorcyk CL (2005) Breast cancer cells stimulate neutrophils to produce oncostatin M: potential implications for tumor progression. Cancer Res 65(19):8896–8904

    Article  PubMed  CAS  Google Scholar 

  182. Grenier A, Chollet-Martin S, Crestani B, Delarche C, El Benna J et al (2002) Presence of a mobilizable intracellular pool of hepatocyte growth factor in human polymorphonuclear neutrophils. Blood 99(8):2997–3004

    Article  PubMed  CAS  Google Scholar 

  183. Imai Y, Kubota Y, Yamamoto S, Tsuji K, Shimatani M et al (2005) Neutrophils enhance invasion activity of human cholangiocellular carcinoma and hepatocellular carcinoma cells: an in vitro study. J Gastroenterol Hepatol 20(2):287–293

    Article  PubMed  CAS  Google Scholar 

  184. Granot Z, Henke E, Comen EA, King TA, Norton L et al (2011) Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell 20(3):300–314. doi:10.1016/j.ccr.2011.08.012

    Article  PubMed  CAS  Google Scholar 

  185. Scapini P, Morini M, Tecchio C, Minghelli S, Di Carlo E et al (2004) CXCL1/macrophage inflammatory protein-2-induced angiogenesis in vivo is mediated by neutrophil-derived vascular endothelial growth factor-A. J Immunol 172(8):5034–5040

    PubMed  CAS  Google Scholar 

  186. Nozawa H, Chiu C, Hanahan D (2006) Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc Natl Acad Sci U S A 103(33):12493–12498

    Article  PubMed  CAS  Google Scholar 

  187. Dumitru CA, Fechner MK, Hoffmann TK, Lang S, Brandau S (2012) A novel p38-MAPK signaling axis modulates neutrophil biology in head and neck cancer. J Leukoc Biol 91(4):591–598. doi:10.1189/jlb.0411193

    Article  PubMed  CAS  Google Scholar 

  188. Jablonska J, Leschner S, Westphal K, Lienenklaus S, Weiss S (2010) Neutrophils responsive to endogenous IFN-beta regulate tumor angiogenesis and growth in a mouse tumor model. J Clin Invest 120(4):1151–1164

    Article  PubMed  CAS  Google Scholar 

  189. Shojaei F, Singh M, Thompson JD, Ferrara N (2008) Role of Bv8 in neutrophil-dependent angiogenesis in a transgenic model of cancer progression. Proc Natl Acad Sci U S A 105(7):2640–2645

    Article  PubMed  CAS  Google Scholar 

  190. Shojaei F, Wu X, Zhong C, Yu L, Liang XH et al (2007) Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 450(7171):825–831. doi:10.1038/nature06348

    Article  PubMed  CAS  Google Scholar 

  191. Shojaei F, Wu X, Qu X, Kowanetz M, Yu L et al (2009) G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proc Natl Acad Sci U S A 106(16):6742–6747. doi:10.1073/pnas.0902280106

    Article  PubMed  CAS  Google Scholar 

  192. Weitzman SA, Weitberg AB, Clark EP, Stossel TP (1985) Phagocytes as carcinogens: malignant transformation produced by human neutrophils. Science (New York, NY) 227(4691):1231–1233

    Article  CAS  Google Scholar 

  193. Sandhu JK, Privora HF, Wenckebach G, Birnboim HC (2000) Neutrophils, nitric oxide synthase, and mutations in the mutatect murine tumor model. Am J Pathol 156(2):509–518

    Article  PubMed  CAS  Google Scholar 

  194. Gungor N, Knaapen AM, Munnia A, Peluso M, Haenen GR et al (2010) Genotoxic effects of neutrophils and hypochlorous acid. Mutagenesis 25(2):149–154

    Article  PubMed  CAS  Google Scholar 

  195. Tazawa H, Okada F, Kobayashi T, Tada M, Mori Y et al (2003) Infiltration of neutrophils is required for acquisition of metastatic phenotype of benign murine fibrosarcoma cells: implication of inflammation-associated carcinogenesis and tumor progression. Am J Pathol 163(6):2221–2232

    Article  PubMed  CAS  Google Scholar 

  196. Campregher C, Luciani MG, Gasche C (2008) Activated neutrophils induce an hMSH2-dependent G2/M checkpoint arrest and replication errors at a (CA)13-repeat in colon epithelial cells. Gut 57(6):780–787

    Article  PubMed  CAS  Google Scholar 

  197. Welch DR, Schissel DJ, Howrey RP, Aeed PA (1989) Tumor-elicited polymorphonuclear cells, in contrast to “normal” circulating polymorphonuclear cells, stimulate invasive and metastatic potentials of rat mammary adenocarcinoma cells. Proc Natl Acad Sci U S A 86(15):5859–5863

    Article  PubMed  CAS  Google Scholar 

  198. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12(4):253–268. doi:10.1038/nri3175

    Article  PubMed  CAS  Google Scholar 

  199. Rodriguez PC, Ernstoff MS, Hernandez C, Atkins M, Zabaleta J et al (2009) Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res 69(4):1553–1560

    Article  PubMed  CAS  Google Scholar 

  200. Schmielau J, Finn OJ (2001) Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients. Cancer Res 61(12):4756–4760

    PubMed  CAS  Google Scholar 

  201. Cortez-Retamozo V, Etzrodt M, Newton A, Rauch PJ, Chudnovskiy A et al (2012) Origins of tumor-associated macrophages and neutrophils. Proc Natl Acad Sci U S A 109(7):2491–2496. doi:10.1073/pnas.1113744109

    Article  PubMed  CAS  Google Scholar 

  202. Brandau S, Trellakis S, Bruderek K, Schmaltz D, Steller G et al (2011) Myeloid-derived suppressor cells in the peripheral blood of cancer patients contain a subset of immature neutrophils with impaired migratory properties. J Leukoc Biol 89(2):311–317. doi:10.1189/jlb.0310162

    Article  PubMed  CAS  Google Scholar 

  203. Solito S, Falisi E, Diaz-Montero CM, Doni A, Pinton L et al (2011) A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells. Blood 118(8):2254–2265. doi:10.1182/blood-2010-12-325753

    Article  PubMed  CAS  Google Scholar 

  204. Youn JI, Collazo M, Shalova IN, Biswas SK, Gabrilovich DI (2012) Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. J Leukoc Biol 91(1):167–181. doi:10.1189/jlb.0311177

    Article  PubMed  CAS  Google Scholar 

  205. Fridlender ZG, Sun J, Mishalian I, Singhal S, Cheng G et al (2012) Transcriptomic analysis comparing tumor-associated neutrophils with granulocytic myeloid-derived suppressor cells and normal neutrophils. PLoS One 7(2):e31524. doi:10.1371/journal.pone.0031524

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The contribution of the European Commission (FP7-HEALTH-F4-2008 “TOLERAGE” 202156, FP7-HEALTH-2011-ADITEC-280873), European Research Council (project HIIS), Fondazione CARIPLO (project Nobel and project 2009-2582), Ministero della Salute (Ricerca finalizzata), the Italian Association for Cancer Research (AIRC; special project 5 × 1000) and Regione Lombardia (project Metadistretti—SEPSIS) is gratefully acknowledged. S.J. is the recipient of a Mario e Valeria Rindi Fellowship from AIRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Mantovani.

Additional information

This article is a contribution to the special issue on Neutrophils – Guest Editors: Paul Hasler and Sinuhe Hahn

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaillon, S., Galdiero, M.R., Del Prete, D. et al. Neutrophils in innate and adaptive immunity. Semin Immunopathol 35, 377–394 (2013). https://doi.org/10.1007/s00281-013-0374-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-013-0374-8

Keywords

Navigation