Skip to main content

Advertisement

Log in

Pathogenesis of multiple sclerosis via environmental and genetic dysregulation of N-glycosylation

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Autoimmune diseases such as multiple sclerosis (MS) result from complex and poorly understood interactions of genetic and environmental factors. A central role for T cells in MS is supported by mouse models, association of the major histocompatibility complex region, and association of critical T cell growth regulator genes such as interleukin-2 receptor (IL-2RA) and interleukin-7 receptor (IL-7RA). Multiple environmental factors (vitamin D3 deficiency and metabolism) converge with multiple genetic variants (IL-7RA, IL-2RA, MGAT1, and CTLA-4) to dysregulate Golgi N-glycosylation in MS, resulting in T cell hyperactivity, loss of self-tolerance and in mice, a spontaneous MS-like disease with neurodegeneration. Here, we review the genetic and biological interactions that regulate MS pathogenesis through dysregulation of N-glycosylation and how this may enable individualized therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Steinman L (2001) Multiple sclerosis: a two-stage disease. Nat Immunol 2:762–764

    Article  PubMed  CAS  Google Scholar 

  2. Filippi M, Rocca MA (2005) MRI evidence for multiple sclerosis as a diffuse disease of the central nervous system. J Neurol 252(Suppl 5):v16–v24

    Article  PubMed  Google Scholar 

  3. Pirko I, Lucchinetti CF, Sriram S, Bakshi R (2007) Gray matter involvement in multiple sclerosis. Neurology 68:634–642

    Article  PubMed  Google Scholar 

  4. Ebers GC, Bulman DE, Sadovnick AD, Paty DW, Warren S, Hader W, Murray TJ, Seland TP, Duquette P, Grey T et al (1986) A population-based study of multiple sclerosis in twins. N Engl J Med 315:1638–1642

    Article  PubMed  CAS  Google Scholar 

  5. Ebers GC, Sadovnick AD, Risch NJ (1995) A genetic basis for familial aggregation in multiple sclerosis. Canadian Collaborative Study Group. Nature 377:150–151

    Article  PubMed  CAS  Google Scholar 

  6. Oldstone MB (1987) Molecular mimicry and autoimmune disease. Cell 50:819–820

    Article  PubMed  CAS  Google Scholar 

  7. Hafler DA, Compston A, Sawcer S, Lander ES, Daly MJ, De Jager PL, de Bakker PI, Gabriel SB, Mirel DB, Ivinson AJ, Pericak-Vance MA, Gregory SG, Rioux JD, McCauley JL, Haines JL, Barcellos LF, Cree B, Oksenberg JR, Hauser SL (2007) Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med 357:851–862

    Article  PubMed  CAS  Google Scholar 

  8. Smolders J, Damoiseaux J, Menheere P, Hupperts R (2008) Vitamin D as an immune modulator in multiple sclerosis, a review. J Neuroimmunol 194:7–17

    Article  PubMed  CAS  Google Scholar 

  9. Compston A, Coles A (2002) Multiple sclerosis. Lancet 359:1221–1231

    Article  PubMed  Google Scholar 

  10. Kurtzke JF (1993) Epidemiologic evidence for multiple sclerosis as an infection. Clin Microbiol Rev 6:382–427

    PubMed  CAS  Google Scholar 

  11. Lincoln MR, Montpetit A, Cader MZ, Saarela J, Dyment DA, Tiislar M, Ferretti V, Tienari PJ, Sadovnick AD, Peltonen L, Ebers GC, Hudson TJ (2005) A predominant role for the HLA class II region in the association of the MHC region with multiple sclerosis. Nat Genet 37:1108–1112

    Article  PubMed  CAS  Google Scholar 

  12. Oksenberg JR, Barcellos LF, Cree BA, Baranzini SE, Bugawan TL, Khan O, Lincoln RR, Swerdlin A, Mignot E, Lin L, Goodin D, Erlich HA, Schmidt S, Thomson G, Reich DE, Pericak-Vance MA, Haines JL, Hauser SL (2004) Mapping multiple sclerosis susceptibility to the HLA-DR locus in African Americans. Am J Hum Genet 74:160–167

    Article  PubMed  CAS  Google Scholar 

  13. Yeo TW, De Jager PL, Gregory SG, Barcellos LF, Walton A, Goris A, Fenoglio C, Ban M, Taylor CJ, Goodman RS, Walsh E, Wolfish CS, Horton R, Traherne J, Beck S, Trowsdale J, Caillier SJ, Ivinson AJ, Green T, Pobywajlo S, Lander ES, Pericak-Vance MA, Haines JL, Daly MJ, Oksenberg JR, Hauser SL, Compston A, Hafler DA, Rioux JD, Sawcer S (2007) A second major histocompatibility complex susceptibility locus for multiple sclerosis. Ann Neurol 61:228–236

    Article  PubMed  Google Scholar 

  14. Oksenberg JR, Baranzini SE (2010) Multiple sclerosis genetics—is the glass half full, or half empty? Nat Rev Neurol 6:429–437

    Article  PubMed  Google Scholar 

  15. Sawcer S, Hellenthal G, Pirinen M, Spencer CC, Patsopoulos NA et al (2011) Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476:214–219

    Article  PubMed  CAS  Google Scholar 

  16. Maier LM, Lowe CE, Cooper J, Downes K, Anderson DE, Severson C, Clark PM, Healy B, Walker N, Aubin C, Oksenberg JR, Hauser SL, Compston A, Sawcer S, De Jager PL, Wicker LS, Todd JA, Hafler DA (2009) IL2RA genetic heterogeneity in multiple sclerosis and type 1 diabetes susceptibility and soluble interleukin-2 receptor production. PLoS Genet 5:e1000322

    Article  PubMed  Google Scholar 

  17. Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678

    Article  Google Scholar 

  18. Todd JA, Walker NM, Cooper JD, Smyth DJ, Downes K, Plagnol V, Bailey R, Nejentsev S, Field SF, Payne F, Lowe CE, Szeszko JS, Hafler JP, Zeitels L, Yang JH, Vella A, Nutland S, Stevens HE, Schuilenburg H, Coleman G, Maisuria M, Meadows W, Smink LJ, Healy B, Burren OS, Lam AA, Ovington NR, Allen J, Adlem E, Leung HT, Wallace C, Howson JM, Guja C, Ionescu-Tirgoviste C, Simmonds MJ, Heward JM, Gough SC, Dunger DB, Wicker LS, Clayton DG (2007) Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet 39:857–864

    Article  PubMed  CAS  Google Scholar 

  19. Malek TR (2008) The biology of interleukin-2. Annu Rev Immunol 26:453–479

    Article  PubMed  CAS  Google Scholar 

  20. Peschon JJ, Morrissey PJ, Grabstein KH, Ramsdell FJ, Maraskovsky E, Gliniak BC, Park LS, Ziegler SF, Williams DE, Ware CB, Meyer JD, Davison BL (1994) Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J Exp Med 180:1955–1960

    Article  PubMed  CAS  Google Scholar 

  21. Dickson SP, Wang K, Krantz I, Hakonarson H, Goldstein DB (2010) Rare variants create synthetic genome-wide associations. PLoS Biol 8:e1000294

    Article  PubMed  Google Scholar 

  22. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL, Mackay TF, McCarroll SA, Visscher PM (2009) Finding the missing heritability of complex diseases. Nature 461:747–753

    Article  PubMed  CAS  Google Scholar 

  23. Gorlov IP, Gorlova OY, Sunyaev SR, Spitz MR, Amos CI (2008) Shifting paradigm of association studies: value of rare single-nucleotide polymorphisms. Am J Hum Genet 82:100–112

    Article  PubMed  CAS  Google Scholar 

  24. McClellan J, King MC (2010) Genetic heterogeneity in human disease. Cell 141:210–217

    Article  PubMed  CAS  Google Scholar 

  25. Culverhouse R, Suarez BK, Lin J, Reich T (2002) A perspective on epistasis: limits of models displaying no main effect. Am J Hum Genet 70:461–471

    Article  PubMed  Google Scholar 

  26. Gray-McGuire C, Moser KL, Gaffney PM, Kelly J, Yu H, Olson JM, Jedrey CM, Jacobs KB, Kimberly RP, Neas BR, Rich SS, Behrens TW, Harley JB (2000) Genome scan of human systemic lupus erythematosus by regression modeling: evidence of linkage and epistasis at 4p16–15.2. Am J Hum Genet 67:1460–1469

    Article  PubMed  CAS  Google Scholar 

  27. Sundvall M, Jirholt J, Yang HT, Jansson L, Engstrom A, Pettersson U, Holmdahl R (1995) Identification of murine loci associated with susceptibility to chronic experimental autoimmune encephalomyelitis. Nat Genet 10:313–317

    Article  PubMed  CAS  Google Scholar 

  28. Prins JB, Todd JA, Rodrigues NR, Ghosh S, Hogarth PM, Wicker LS, Gaffney E, Podolin PL, Fischer PA, Sirotina A et al (1993) Linkage on chromosome 3 of autoimmune diabetes and defective Fc receptor for IgG in NOD mice. Science 260:695–698

    Article  PubMed  CAS  Google Scholar 

  29. Baranzini SE, Mudge J, van Velkinburgh JC, Khankhanian P, Khrebtukova I, Miller NA, Zhang L, Farmer AD, Bell CJ, Kim RW, May GD, Woodward JE, Caillier SJ, McElroy JP, Gomez R, Pando MJ, Clendenen LE, Ganusova EE, Schilkey FD, Ramaraj T, Khan OA, Huntley JJ, Luo S, Kwok PY, Wu TD, Schroth GP, Oksenberg JR, Hauser SL, Kingsmore SF (2010) Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis. Nature 464:1351–1356

    Article  PubMed  CAS  Google Scholar 

  30. Lau KS, Partridge EA, Grigorian A, Silvescu CI, Reinhold VN, Demetriou M, Dennis JW (2007) Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 129:123–134

    Article  PubMed  CAS  Google Scholar 

  31. Demetriou M, Granovsky M, Quaggin S, Dennis JW (2001) Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature 409:733–739

    Article  PubMed  CAS  Google Scholar 

  32. Chen IJ, Chen HL, Demetriou M (2007) Lateral compartmentalization of T cell receptor versus CD45 by galectin-N-glycan binding and microfilaments coordinate basal and activation signaling. J Biol Chem 282:35361–35372

    Article  PubMed  CAS  Google Scholar 

  33. Lee SU, Grigorian A, Pawling J, Chen IJ, Gao G, Mozaffar T, McKerlie C, Demetriou M (2007) N-glycan processing deficiency promotes spontaneous inflammatory demyelination and neurodegeneration. J Biol Chem 282:33725–33734

    Article  PubMed  CAS  Google Scholar 

  34. Schachter H (1991) The ‘yellow brick road’ to branched complex N-glycans. Glycobiology 1:453–461

    Article  PubMed  CAS  Google Scholar 

  35. Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–664

    Article  PubMed  CAS  Google Scholar 

  36. Dennis JW, Nabi IR, Demetriou M (2009) Metabolism, cell surface organization, and disease. Cell 139:1229–1241

    Article  PubMed  Google Scholar 

  37. Partridge EA, Le Roy C, Di Guglielmo GM, Pawling J, Cheung P, Granovsky M, Nabi IR, Wrana JL, Dennis JW (2004) Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science 306:120–124

    Article  PubMed  CAS  Google Scholar 

  38. Brewer CF, Miceli MC, Baum LG (2002) Clusters, bundles, arrays and lattices: novel mechanisms for lectin-saccharide-mediated cellular interactions. Curr Opin Struct Biol 12:616–623

    Article  PubMed  CAS  Google Scholar 

  39. Ahmad N, Gabius HJ, Andre S, Kaltner H, Sabesan S, Roy R, Liu B, Macaluso F, Brewer CF (2004) Galectin-3 precipitates as a pentamer with synthetic multivalent carbohydrates and forms heterogeneous cross-linked complexes. J Biol Chem 279:10841–10847

    Article  PubMed  CAS  Google Scholar 

  40. Hirabayashi J, Hashidate T, Arata Y, Nishi N, Nakamura T, Hirashima M, Urashima T, Oka T, Futai M, Muller WE, Yagi F, Kasai K (2002) Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim Biophys Acta 1572:232–254

    Article  PubMed  CAS  Google Scholar 

  41. Grigorian A, Lee SU, Tian W, Chen IJ, Gao G, Mendelsohn R, Dennis JW, Demetriou M (2007) Control of T cell-mediated autoimmunity by metabolite flux to N-glycan biosynthesis. J Biol Chem 282:20027–20035

    Article  PubMed  CAS  Google Scholar 

  42. Sasai K, Ikeda Y, Fujii T, Tsuda T, Taniguchi N (2002) UDP-GlcNAc concentration is an important factor in the biosynthesis of beta1,6-branched oligosaccharides: regulation based on the kinetic properties of N-acetylglucosaminyltransferase V. Glycobiology 12:119–127

    Article  PubMed  CAS  Google Scholar 

  43. Grigorian A, Torossian S, Demetriou M (2009) T-cell growth, cell surface organization, and the galectin–glycoprotein lattice. Immunol Rev 230:232–246

    Article  PubMed  CAS  Google Scholar 

  44. Mkhikian H, Grigorian A, Li CF, Chen HL, Newton B, Zhou RW, Beeton C, Torossian S, Tatarian GG, Lee SU, Lau K, Walker E, Siminovitch KA, Chandy KG, Yu Z, Dennis JW, Demetriou M (2011) Genetics and the environment converge to dysregulate N-glycosylation in multiple sclerosis. Nat Commun 2:334

    Article  PubMed  Google Scholar 

  45. Steinman L (2008) A rush to judgment on Th17. J Exp Med 205:1517–1522

    Article  PubMed  CAS  Google Scholar 

  46. Morgan R, Gao G, Pawling J, Dennis JW, Demetriou M, Li B (2004) N-acetylglucosaminyltransferase V (Mgat5)-mediated N-glycosylation negatively regulates Th1 cytokine production by T cells. J Immunol 173:7200–7208

    PubMed  CAS  Google Scholar 

  47. Grigorian A, Araujo L, Naidu NN, Place DJ, Choudhury B, Demetriou M (2011) N-Acetylglucosamine inhibits T-helper 1 (Th1)/T-helper 17 (Th17) cell responses and treats experimental autoimmune encephalomyelitis. J Biol Chem 286:40133–40141

    Article  PubMed  CAS  Google Scholar 

  48. Togayachi A, Kozono Y, Ishida H, Abe S, Suzuki N, Tsunoda Y, Hagiwara K, Kuno A, Ohkura T, Sato N, Sato T, Hirabayashi J, Ikehara Y, Tachibana K, Narimatsu H (2007) Polylactosamine on glycoproteins influences basal levels of lymphocyte and macrophage activation. Proc Natl Acad Sci U S A 104:15829–15834

    Article  PubMed  CAS  Google Scholar 

  49. Ilarregui JM, Croci DO, Bianco GA, Toscano MA, Salatino M, Vermeulen ME, Geffner JR, Rabinovich GA (2009) Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10. Nat Immunol 10:981–991

    Article  PubMed  CAS  Google Scholar 

  50. Chui D, Sellakumar G, Green R, Sutton-Smith M, McQuistan T, Marek K, Morris H, Dell A, Marth J (2001) Genetic remodeling of protein glycosylation in vivo induces autoimmune disease. Proc Natl Acad Sci U S A 98:1142–1147

    Article  PubMed  CAS  Google Scholar 

  51. Green RS, Stone EL, Tenno M, Lehtonen E, Farquhar MG, Marth JD (2007) Mammalian N-glycan branching protects against innate immune self-recognition and inflammation in autoimmune disease pathogenesis. Immunity 27:308–320

    Article  PubMed  CAS  Google Scholar 

  52. Dam TK, Brewer CF (2010) Lectins as pattern recognition molecules: the effects of epitope density in innate immunity. Glycobiology 20:270–279

    Article  PubMed  CAS  Google Scholar 

  53. Ye Z, Marth JD (2004) N-glycan branching requirement in neuronal and postnatal viability. Glycobiology 14:547–558

    Article  PubMed  CAS  Google Scholar 

  54. Wellen KE, Lu C, Mancuso A, Lemons JM, Ryczko M, Dennis JW, Rabinowitz JD, Coller HA, Thompson CB (2010) The hexosamine biosynthetic pathway couples growth factor-induced glutamine uptake to glucose metabolism. Genes Dev 24:2784–2799

    Article  PubMed  CAS  Google Scholar 

  55. Salvatore S, Heuschkel R, Tomlin S, Davies SE, Edwards S, Walker-Smith JA, French I, Murch SH (2000) A pilot study of N-acetyl glucosamine, a nutritional substrate for glycosaminoglycan synthesis, in paediatric chronic inflammatory bowel disease. Aliment Pharmacol Ther 14:1567–1579

    Article  PubMed  CAS  Google Scholar 

  56. Ramagopalan SV, Dyment DA, Ebers GC (2008) Genetic epidemiology: the use of old and new tools for multiple sclerosis. Trends Neurosci 31:645–652

    Article  PubMed  CAS  Google Scholar 

  57. Ascherio A, Munger KL, Simon KC (2010) Vitamin D and multiple sclerosis. Lancet Neurol 9:599–612

    Article  PubMed  Google Scholar 

  58. Noseworthy JH (1999) Progress in determining the causes and treatment of multiple sclerosis. Nature 399:A40–A47

    PubMed  CAS  Google Scholar 

  59. Munger KL, Zhang SM, O'Reilly E, Hernan MA, Olek MJ, Willett WC, Ascherio A (2004) Vitamin D intake and incidence of multiple sclerosis. Neurology 62:60–65

    Article  PubMed  CAS  Google Scholar 

  60. Tsoukas CD, Provvedini DM, Manolagas SC (1984) 1,25-dihydroxyvitamin D3: a novel immunoregulatory hormone. Science 224:1438–1440

    Article  PubMed  CAS  Google Scholar 

  61. Lemire JM, Archer DC (1991) 1,25-dihydroxyvitamin D3 prevents the in vivo induction of murine experimental autoimmune encephalomyelitis. J Clin Investig 87:1103–1107

    Article  PubMed  CAS  Google Scholar 

  62. Mayne CG, Spanier JA, Relland LM, Williams CB, Hayes CE (2011) 1,25-Dihydroxyvitamin D3 acts directly on the T lymphocyte vitamin D receptor to inhibit experimental autoimmune encephalomyelitis. Eur J Immunol 41:822–832

    Article  PubMed  CAS  Google Scholar 

  63. Gregory SG, Schmidt S, Seth P, Oksenberg JR, Hart J, Prokop A, Caillier SJ, Ban M, Goris A, Barcellos LF, Lincoln R, McCauley JL, Sawcer SJ, Compston DA, Dubois B, Hauser SL, Garcia-Blanco MA, Pericak-Vance MA, Haines JL (2007) Interleukin 7 receptor alpha chain (IL7R) shows allelic and functional association with multiple sclerosis. Nat Genet 39:1083–1091

    Article  PubMed  CAS  Google Scholar 

  64. Lundmark F, Duvefelt K, Iacobaeus E, Kockum I, Wallstrom E, Khademi M, Oturai A, Ryder LP, Saarela J, Harbo HF, Celius EG, Salter H, Olsson T, Hillert J (2007) Variation in interleukin 7 receptor alpha chain (IL7R) influences risk of multiple sclerosis. Nat Genet 39:1108–1113

    Article  PubMed  CAS  Google Scholar 

  65. Rose T, Lambotte O, Pallier C, Delfraissy JF, Colle JH (2009) Identification and biochemical characterization of human plasma soluble IL-7R: lower concentrations in HIV-1-infected patients. J Immunol 182:7389–7397

    Article  PubMed  CAS  Google Scholar 

  66. Maier LM, Anderson DE, Severson CA, Baecher-Allan C, Healy B, Liu DV, Wittrup KD, De Jager PL, Hafler DA (2009) Soluble IL-2RA levels in multiple sclerosis subjects and the effect of soluble IL-2RA on immune responses. J Immunol 182:1541–1547

    PubMed  CAS  Google Scholar 

  67. Grigorian A, Mkhikian H, Demetriou M (2012) Interleukin-2, interleukin-7, T cell-mediated autoimmunity, and N-glycosylation. Ann N Y Acad Sci. doi:10.1111/j.1749-6632.2011.06391.x

  68. Anjos S, Nguyen A, Ounissi-Benkalha H, Tessier MC, Polychronakos C (2002) A common autoimmunity predisposing signal peptide variant of the cytotoxic T-lymphocyte antigen 4 results in inefficient glycosylation of the susceptibility allele. J Biol Chem 277:46478–46486

    Article  PubMed  CAS  Google Scholar 

  69. Maurer M, Loserth S, Kolb-Maurer A, Ponath A, Wiese S, Kruse N, Rieckmann P (2002) A polymorphism in the human cytotoxic T-lymphocyte antigen 4 (CTLA4) gene (exon 1 +49) alters T-cell activation. Immunogenetics 54:1–8

    Article  PubMed  Google Scholar 

  70. Kavvoura FK, Ioannidis JP (2005) CTLA-4 gene polymorphisms and susceptibility to type 1 diabetes mellitus: a HuGE Review and meta-analysis. Am J Epidemiol 162:3–16

    Article  PubMed  Google Scholar 

  71. Bagos PG, Karnaouri AC, Nikolopoulos GK, Hamodrakas SJ (2007) No evidence for association of CTLA-4 gene polymorphisms with the risk of developing multiple sclerosis: a meta-analysis. Mult Scler 13:156–168

    Article  PubMed  CAS  Google Scholar 

  72. Hypponen E, Laara E, Reunanen A, Jarvelin MR, Virtanen SM (2001) Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. Lancet 358:1500–1503

    Article  PubMed  CAS  Google Scholar 

  73. Zella JB, McCary LC, DeLuca HF (2003) Oral administration of 1,25-dihydroxyvitamin D3 completely protects NOD mice from insulin-dependent diabetes mellitus. Arch Biochem Biophys 417:77–80

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research was supported by the National Institutes of Health R01AI053331 and R01AI082266 to M.D. and F32AI081456 to A.G. through the National Institute of Allergy and Infectious Disease, F30 HL108451 to H.M. through the National Heart Lung and Blood Institute, as well as through a Collaborative Multiple Sclerosis Research Center Award to M.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Demetriou.

Additional information

This article is published as part of the Special Issue on Glycosylation and Immunity [34:3].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grigorian, A., Mkhikian, H., Li, C.F. et al. Pathogenesis of multiple sclerosis via environmental and genetic dysregulation of N-glycosylation. Semin Immunopathol 34, 415–424 (2012). https://doi.org/10.1007/s00281-012-0307-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-012-0307-y

Keywords