Skip to main content
Log in

Osteointegration of orthopaedic devices

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

The different properties of bone must be considered in order to understand the relation between orthopaedic devices and bone. The epi-/metaphyseal areas are defined by their rigidity, their high vascularity and their quick remodelling process. In contrast, the diaphyses of bone are rather elastic and built of dense, scarcely vascularised bone presenting slow remodelling. Implants can integrate by pure mechanical contact without real affinity to bone or, alternatively, they can favour ongrowth of bone, provided that they are osteoconductive. Amongst different bone substitutes, only some of them are absorbable. Only derivates of bone may present the property of osteoinduction, which is the power to create new bone in any region of the body. Orthopaedic devices are characterised by their shape, their stiffness or elasticity and by the characteristic properties of material. They may be osteoconductive such as titanium alloys and some ceramics, allowing integration in bone. Alternatively, other materials such as steel, CoCr alloys and PMMA cements remain separated from bone by a tiny layer of collagen. The surface structure influences the quality of integration. The integration of implants depends on the mutual interaction of the material with the tissue on the implantation site. All implants undergo fatiguing which can lead to fracture of the implant. All implant–bone contacts are threatened by granulation tissue mainly formed because of wear products, infection and other reasons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Wolff J (1882) Das Gesetz der Transformation der Knochen. Hirschwald, Berlin

    Google Scholar 

  2. Müller ME, Nazarian S, Koch P (1990) The comprehensive classification of fractures of long bones. Springer, New York

    Google Scholar 

  3. von Rechberg B, Hofmann-Amtenbrink M, Meinerl L et al (2007) Introduction to biotechnology. In: Rüedi TP, Buckley RE, Moran CG (eds) AO principles of fracture management, 2nd edn. Thieme, Stuttgart

    Google Scholar 

  4. Ochsner PE (1987) Trikalziumphosphat- und Hydroxyapatit-Keramik. H Unfallheilk 185:129–134

    Google Scholar 

  5. Richards RG, Perren S (2007) Implants and materials in fracture fixation. In: Rüedi TP, Buckley RE, Moran CG (eds) AO principles of fracture management, 2nd edn. Thieme, Stuttgart

    Google Scholar 

  6. Maurer TB, Ochsner PE, Schwarzer G, Schumacher M (2001) Increased loosening of cemented straight stem prostheses made from titanium alloys. An analysis and comparison with prostheses made of cobalt–chromium–nickel alloy. Int Orthop 25:77–80

    Article  PubMed  CAS  Google Scholar 

  7. Nowakowski AM, Luem M, Ochsner PE (2008) Cemented collar and longitudinal groove: the effect on mechanical stability with aseptic loosening in Müller straight-stem implants. Arch Orthop Traumat Surg 128:745–750

    Article  Google Scholar 

  8. Clauss M, Ilchmann T, Zimmermann P, Ochsner PE (2010) The histology around the cemented Müller straight stem: a post-mortem analysis of eight well-fixed stems with a mean follow-up of 12.1 y. J Bone Joint Surg (Br) 92b:1515–1521

    Google Scholar 

  9. Charnley J (1961) Arthroplasty of the hip—a new operation. Lancet II:1129

    Article  Google Scholar 

  10. Müller ME (1970) Total hip prostheses. Clin Orthop 72:46–68

    PubMed  Google Scholar 

  11. Ochsner PE (2003) Total hip replacement: implantation technique and local complications. Springer, Heidelberg

    Google Scholar 

  12. Buckwalter AE, Callaghan JJ, Liu SS et al (2006) Results of Charnley total hip arthroplasty with use of improved femoral cementing techniques. A concise follow-up, at a minimum of 25 years, of a previous report. J Bone Joint Surg Am 88:1481–1485

    Article  PubMed  Google Scholar 

  13. Willert HG, Semlitsch M (1977) Reactions of the articular capsule to wear products of artificial joint prostheses. J Biomed Mater Res 11:157–164

    Article  PubMed  CAS  Google Scholar 

  14. Pazzaglia UE, Ghisellini F, Barbieri D et al (1988) Failure of the stem in total hip replacement. A study of aetiology and mechanism of failure in 13 cases. Arch Orthop Trauma Surg 107:195–202

    Article  PubMed  CAS  Google Scholar 

  15. Schenk R, Willenegger H (1963) zum histologischen Bild der sogenannten Primärheilung der Knochenkompakta nach experimentellen Osteotomien am Hund. Experientia 19:593–595

    Article  PubMed  CAS  Google Scholar 

  16. Wilber JH, Baumgaertel F (2007) Bridge plating. In: Rüedi TP, Buckley RE, Moran CG (eds) AO principles of fracture management, 2nd edn. Thieme, Stuttgart

    Google Scholar 

  17. Verburg AD, Klopper PJ, Van den Hooff A, Marti RK, Ochsner PE (1988) The healing of biologic and synthetic bone implants. Arch Orthop Traumat Surg 107:293–300

    Article  CAS  Google Scholar 

  18. Phemister DB (1914) The fate of transplanted bone and regenerative power of its various constituents. Surg Gynecol Obstet 19:303–333

    Google Scholar 

  19. Ilizarov GA (1990) Clinical application of the tension–stress effect for limb lengthening. Clin Orthop 250:8–26

    PubMed  Google Scholar 

  20. Govender S, Csimma C, Genant HK et al (2002) Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of 400 and 50 patients. J Bone Joint Surg Am 84A:2123–2134

    Google Scholar 

  21. Gustillo RB, Mendoza RM, Williams DN (1984) Problems in the management of type III (severe) open fractures: a new classification of type III open fractures. J Trauma 24:742–746

    Article  Google Scholar 

  22. Swiontkowski MF, Aro HT, Donnell S et al (2006) Recombinant human bone morphogenetic protein-2 in open tibial fractures. A subgroup analysis of data combined from two prospective randomized studies. J Bone Joint Surg Am 88A:1258–1265

    Article  Google Scholar 

  23. Greenwald AS, Boden SD, Goldberg VM et al (2001) Bone-graft substitutes: facts, fictions and applications. J Bone Joint Surg 83A(Suppl 2):S98–S103

    Google Scholar 

  24. Nuss KMR, von Rechenberg B (2008) Biocompatibility issues with modern implants in bone—a review for clinical orthopaedics. Open Orthop J 2:66–78

    Article  PubMed  Google Scholar 

  25. Zimmerli W (2011) Pathogenesis of implant-associated infection. Semin Immunopath (this issue)

  26. Zimmerli W, Trampuz A, Ochsner PE (2004) Prosthetic-joint Infection. N Eng J Med 351:39–48

    Article  Google Scholar 

  27. Klein MP, Rahn BA, Frigg R et al (1990) Reaming versus non—reaming in medullary nailing: interference with cortical circulation of the canine tibia. Arch Orthop Trauma Surg 109:314–316

    Article  PubMed  CAS  Google Scholar 

  28. Ochsner PE, Brunazzi MG (1994) Intramedullary reaming and soft tissue procedures in treatment of chronic osteomyelitis of long bones. Orthopaedics 17:433–440

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter E. Ochsner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ochsner, P.E. Osteointegration of orthopaedic devices. Semin Immunopathol 33, 245–256 (2011). https://doi.org/10.1007/s00281-011-0241-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-011-0241-4

Keywords