Skip to main content

Advertisement

Log in

Evaluation of NUC-1031: a first-in-class ProTide in biliary tract cancer

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

NUC1031 is a first-in-class ProTide, that is a gemcitabine pro-drug designed to overcome putative mechanisms of resistance, including decreased expression of hENT/hCNT transporters, absence of activating enzymes such as deoxycytidine kinase (dCK) and presence of degrading enzymes such as cytidine deaminase (CDA). We undertook comprehensive pre-clinical evaluation of NUC1031 in biliary tract cancer (BTC) models, given that gemcitabine/cisplatin is a standard first-line therapy in advanced BTC.

Methods

Here, we compared the in vitro activity of NUC1031 in comparison to gemcitabine, validate putative mechanism(s) of action, assessed potential biomarkers of sensitivity or resistance, and performed combination studies with cisplatin. We also evaluated the in vivo efficacy of NUC1031 and gemcitabine using a CDA-high cholangiocarcinoma patient-derived xenograft (PDX) model.

Results

In a panel of BTC cell lines (N = 10), NUC1031 had less potency than gemcitabine in multiple cellular assays. NUC1031 did not demonstrate evidence of greater synergy over gemcitabine in combination with cisplatin. Surprisingly, efficacy of both gemcitabine and NUC1031 was not found to be correlated with hENT/hCTN, dCK or CDA transcript levels. Gemcitabine and NUC1031 showed equivalent efficacy in a CDA-high PDX model in vivo contradicting the primary rationale of NUC1031 design.

Conclusion

NUC1031 did not exhibit evidence of superior activity over gemcitabine, as a single-agent, or in combination with cisplatin, in either our in vivo or in vitro BTC models. Given that the largest Phase 3 study (ClinicalTrials.gov: NCT0314666) to date in BTC is underway (N = 828) comparing NUC1031/cisplatin to gemcitabine/cisplatin, our results suggest that a more conservative clinical evaluation path would be more appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BTC:

Biliary tract cancer

CCA:

Cholangiocarcinoma

hENT1:

Human equilibrative nucleoside transporters

CDA:

Deoxycytidine deaminase

dCK:

Deoxycytidine kinase

RRM1:

Ribonucleotide reductase catalytic subunit M1

FOLFOX:

Folinic acid fluorouracil oxaloplatin

DDR:

Drug dose response

EC50 :

Half-maximal effective concentration

H&E:

Hematoxylin and eosin stain

NOD:

Non-obese diabetic

PDX:

Patient-derived xenograft

IP:

Intraperitoneal

PI:

Propidium iodide

TUNEL:

Terminal deoxynucleotide transferase dUTP nick-end labelling

R 2 :

Linear regression

KMT2D:

Lysine methyltransferase 2D

References

  1. de Groen PC, Gores GJ, LaRusso NF et al (1999) Biliary tract cancers. N Engl J Med 341:1368–1378. https://doi.org/10.1056/NEJM199910283411807

    Article  PubMed  Google Scholar 

  2. Van Dyke AL, Shiels MS, Jones GS et al (2019) Biliary tract cancer incidence and trends in the United States by demographic group, 1999–2013. Cancer 125:1489–1498. https://doi.org/10.1002/cncr.31942

    Article  PubMed  Google Scholar 

  3. Ghidini M, Pizzo C, Botticelli A et al (2018) Biliary tract cancer: current challenges and future prospects. Cancer Manag Res 11:379–388. https://doi.org/10.2147/CMAR.S157156

    Article  PubMed  PubMed Central  Google Scholar 

  4. Njei B (2014) Changing pattern of epidemiology in intrahepatic cholangiocarcinoma. Hepatology 60:1107–1108. https://doi.org/10.1002/hep.26958

    Article  PubMed  Google Scholar 

  5. Razumilava N, Gores GJ (2015) Building a staircase to precision medicine for biliary tract cancer. Nat Genet 47:967–968. https://doi.org/10.1038/ng.3386

    Article  CAS  PubMed  Google Scholar 

  6. Valle J, Wasan H, Palmer DH et al (2010) Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med 362:1273–1281. https://doi.org/10.1056/NEJMoa0908721

    Article  CAS  PubMed  Google Scholar 

  7. Park JO, Oh D-Y, Hsu C et al (2015) Gemcitabine plus cisplatin for advanced biliary tract cancer: a systematic review. Cancer Res Treat 47:343–361. https://doi.org/10.4143/crt.2014.308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bogenberger JM, DeLeon TT, Arora M et al (2018) Emerging role of precision medicine in biliary tract cancers. NPJ Precis Oncol 2:21. https://doi.org/10.1038/s41698-018-0064-z

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lamarca A, Palmer DH, Wasan HS et al (2019) ABC-06: a randomised phase III, multi-centre, open-label study of active symptom control (ASC) alone or ASC with oxaliplatin/5-FU chemotherapy (ASC+mFOLFOX) for patients (pts) with locally advanced/metastatic biliary tract cancers (ABC) previously-treated with cisplatin/gemcitabine (CisGem) chemotherapy. JCO 37:4003–4003. https://doi.org/10.1200/JCO.2019.37.15_suppl.4003

    Article  Google Scholar 

  10. Ramírez-Merino N, Aix SP, Cortés-Funes H (2013) Chemotherapy for cholangiocarcinoma: an update. World J Gastrointest Oncol 5:171–176. https://doi.org/10.4251/wjgo.v5.i7.171

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mini E, Nobili S, Caciagli B et al (2006) Cellular pharmacology of gemcitabine. Ann Oncol 17:v7–v12. https://doi.org/10.1093/annonc/mdj941

    Article  PubMed  Google Scholar 

  12. Nordh S, Ansari D, Andersson R (2014) hENT1 expression is predictive of gemcitabine outcome in pancreatic cancer: a systematic review. World J Gastroenterol 20:8482–8490. https://doi.org/10.3748/wjg.v20.i26.8482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vos LJ, Yusuf D, Lui A et al (2019) Predictive and prognostic properties of human equilibrative nucleoside transporter 1 expression in gemcitabine-treated pancreatobiliary cancer: a meta-analysis. JCO Precis Oncol. https://doi.org/10.1200/PO.18.00240

    Article  PubMed  Google Scholar 

  14. Nakano Y, Tanno S, Koizumi K et al (2007) Gemcitabine chemoresistance and molecular markers associated with gemcitabine transport and metabolism in human pancreatic cancer cells. Br J Cancer 96:457–463. https://doi.org/10.1038/sj.bjc.6603559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sato J, Kimura T, Saito T et al (2011) Gene expression analysis for predicting gemcitabine resistance in human cholangiocarcinoma. J Hepatobiliary Pancreat Sci 18:700–711. https://doi.org/10.1007/s00534-011-0376-7

    Article  PubMed  Google Scholar 

  16. Deng T, Pan H, Han R et al (2014) Gemcitabine sensitivity factors, hENT1 and RRM1 as potential prognostic biomarker for advanced biliary tract cancer. Int J Clin Exp Med 7:5041–5049

    PubMed  PubMed Central  Google Scholar 

  17. Gong W, Zhang X, Wu J et al (2012) RRM1 expression and clinical outcome of gemcitabine-containing chemotherapy for advanced non-small-cell lung cancer: a meta-analysis. Lung Cancer 75:374–380. https://doi.org/10.1016/j.lungcan.2011.08.003

    Article  PubMed  Google Scholar 

  18. Vandana M, Sahoo SK (2010) Long circulation and cytotoxicity of PEGylated gemcitabine and its potential for the treatment of pancreatic cancer. Biomaterials 31:9340–9356. https://doi.org/10.1016/j.biomaterials.2010.08.010

    Article  CAS  PubMed  Google Scholar 

  19. Réjiba S, Reddy LH, Bigand C et al (2011) Squalenoyl gemcitabine nanomedicine overcomes the low efficacy of gemcitabine therapy in pancreatic cancer. Nanomedicine 7:841–849. https://doi.org/10.1016/j.nano.2011.02.012

    Article  CAS  PubMed  Google Scholar 

  20. Slusarczyk M, Ferla S, Brancale A, McGuigan C (2018) Synthesis and biological evaluation of 6-substituted-5-fluorouridine ProTides. Bioorg Med Chem 26:551–565. https://doi.org/10.1016/j.bmc.2017.11.037

    Article  CAS  PubMed  Google Scholar 

  21. Bergman AM, Adema AD, Balzarini J et al (2011) Antiproliferative activity, mechanism of action and oral antitumor activity of CP-4126, a fatty acid derivative of gemcitabine, in in vitro and in vivo tumor models. Invest New Drugs 29:456–466. https://doi.org/10.1007/s10637-009-9377-7

    Article  CAS  PubMed  Google Scholar 

  22. Poplin E, Wasan H, Rolfe L et al (2013) Randomized, multicenter, phase II study of CO-101 versus gemcitabine in patients with metastatic pancreatic ductal adenocarcinoma: including a prospective evaluation of the role of hENT1 in gemcitabine or CO-101 sensitivity. J Clin Oncol 31:4453–4461. https://doi.org/10.1200/JCO.2013.51.0826

    Article  CAS  PubMed  Google Scholar 

  23. Infante JR, Benhadji KA, Dy GK et al (2015) Phase 1b study of the oral gemcitabine ‘Pro-drug’ LY2334737 in combination with capecitabine in patients with advanced solid tumors. Invest New Drugs 33:432–439. https://doi.org/10.1007/s10637-015-0207-9

    Article  CAS  PubMed  Google Scholar 

  24. McGuigan C, Madela K, Aljarah M et al (2010) Design, synthesis and evaluation of a novel double pro-drug: INX-08189. A new clinical candidate for hepatitis C virus. Bioorg Med Chem Lett 20:4850–4854. https://doi.org/10.1016/j.bmcl.2010.06.094

    Article  CAS  PubMed  Google Scholar 

  25. Chen P, Chien P-Y, Khan AR et al (2006) In-vitro and in-vivo anti-cancer activity of a novel gemcitabine-cardiolipin conjugate. Anticancer Drugs 17:53–61. https://doi.org/10.1097/01.cad.0000185182.80227.48

    Article  CAS  PubMed  Google Scholar 

  26. Wu W, Sigmond J, Peters GJ, Borch RF (2007) Synthesis and biological activity of a gemcitabine phosphoramidate prodrug. J Med Chem 50:3743–3746. https://doi.org/10.1021/jm070269u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Slusarczyk M, Lopez MH, Balzarini J et al (2014) Application of ProTide technology to gemcitabine: a successful approach to overcome the key cancer resistance mechanisms leads to a new agent (NUC-1031) in clinical development. J Med Chem 57:1531–1542. https://doi.org/10.1021/jm401853a

    Article  CAS  PubMed  Google Scholar 

  28. Palmer DH, Ross PJ, Silcocks P et al (2018) ACELARATE: a phase III, open label, multicentre randomised clinical study comparing Acelarin (NUC-1031) with gemcitabine in patients with metastatic pancreatic carcinoma. JCO 36:537. https://doi.org/10.1200/JCO.2018.36.4_suppl.TPS537

    Article  Google Scholar 

  29. Blagden SP, Rizzuto I, Stavraka C et al (2015) A first in human Phase I/II study of NUC-1031 in patients with advanced gynecological cancers. JCO 33:2547–2547. https://doi.org/10.1200/jco.2015.33.15_suppl.2547

    Article  Google Scholar 

  30. Blagden SP, Sukumaran A, Gnanaranjan C et al (2016) A phase Ib study of NUC1031 and carboplatin for patients with recurrent ovarian cancer. JCO 34:5565–5565. https://doi.org/10.1200/JCO.2016.34.15_suppl.5565

    Article  Google Scholar 

  31. Bré J, Sarr A, Mullen P et al (2018) Abstract 1855: NUC-1031 overcomes resistance associated with gemcitabine in cancer patients. Cancer Res 78:1855–1855. https://doi.org/10.1158/1538-7445.AM2018-1855

    Article  Google Scholar 

  32. Ghazaly EA, Rizzuto I, Gabra H et al (2014) ProGem1: a phase I/II study of a first-in-class nucleotide, Acelarin, in patients with advanced solid tumors. JCO 32:2531–2531. https://doi.org/10.1200/jco.2014.32.15_suppl.2531

    Article  Google Scholar 

  33. Knox JJ, McNamara MG, Palmer DH et al (2019) NUC-1031 in combination with cisplatin for first-line treatment of advanced biliary tract cancer. JCO 37:4156. https://doi.org/10.1200/JCO.2019.37.15_suppl.TPS4156

    Article  Google Scholar 

  34. McNamara MG, Bridgewater JA, Palmer DH et al (2018) ABC-08: A phase Ib, multi-centre, open-label study of a first-in-class nucleotide analogue NUC-1031 in combination with cisplatin in patients with locally advanced/metastatic biliary tract cancers. JCO 36:544. https://doi.org/10.1200/JCO.2018.36.4_suppl.TPS544

    Article  Google Scholar 

  35. Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55. https://doi.org/10.1016/0065-2571(84)90007-4

    Article  CAS  PubMed  Google Scholar 

  36. Reynolds CP, Maurer BJ (2005) Evaluating response to antineoplastic drug combinations in tissue culture models. Methods Mol Med 110:173–183. https://doi.org/10.1385/1-59259-869-2:173

    Article  CAS  PubMed  Google Scholar 

  37. Di Veroli GY, Fornari C, Wang D et al (2016) Combenefit: an interactive platform for the analysis and visualization of drug combinations. Bioinformatics 32:2866–2868. https://doi.org/10.1093/bioinformatics/btw230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111. https://doi.org/10.1093/bioinformatics/btp120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930. https://doi.org/10.1093/bioinformatics/btt656

    Article  CAS  PubMed  Google Scholar 

  40. Cibulskis K, Lawrence MS, Carter SL et al (2013) Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol 31:213–219. https://doi.org/10.1038/nbt.2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Van der Auwera GA, Carneiro MO, Hartl C et al (2013) From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinform 43:1–33. https://doi.org/10.1002/0471250953.bi1110s43

    Article  Google Scholar 

  42. Kocher J-PA, Quest DJ, Duffy P et al (2014) The biological reference repository (BioR): a rapid and flexible system for genomics annotation. Bioinformatics 30:1920–1922. https://doi.org/10.1093/bioinformatics/btu137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ruiz C, Lenkiewicz E, Evers L et al (2011) Advancing a clinically relevant perspective of the clonal nature of cancer. PNAS 108:12054–12059. https://doi.org/10.1073/pnas.1104009108

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lipson D, Aumann Y, Ben-Dor A et al (2006) Efficient calculation of interval scores for DNA copy number data analysis. J Comput Biol 13:215–228. https://doi.org/10.1089/cmb.2006.13.215

    Article  CAS  PubMed  Google Scholar 

  45. Leiting JL, Hernandez MC, Yang L et al (2019) Rituximab decreases lymphoproliferative tumor formation in hepatopancreaticobiliary and gastrointestinal cancer patient-derived xenografts. Sci Rep 9:1–10. https://doi.org/10.1038/s41598-019-42470-w

    Article  CAS  Google Scholar 

  46. Seidman AD (2001) Gemcitabine as single-agent therapy in the management of advanced breast cancer. Oncology (Williston Park, NY) 15:11–14. https://doi.org/10.3816/CBC.2002.s.002

    Article  CAS  Google Scholar 

  47. Berlin J, Benson AB (2010) Chemotherapy: gemcitabine remains the standard of care for pancreatic cancer. Nat Rev Clin Oncol 7:135–137. https://doi.org/10.1038/nrclinonc.2010.16

    Article  CAS  PubMed  Google Scholar 

  48. Ali SM, Khan AR, Ahmad MU et al (2005) Synthesis and biological evaluation of gemcitabine-lipid conjugate (NEO6002). Bioorg Med Chem Lett 15:2571–2574. https://doi.org/10.1016/j.bmcl.2005.03.046

    Article  CAS  PubMed  Google Scholar 

  49. Moysan E, Bastiat G, Benoit J-P (2013) Gemcitabine versus modified gemcitabine: a review of several promising chemical modifications. Mol Pharm 10:430–444. https://doi.org/10.1021/mp300370t

    Article  CAS  PubMed  Google Scholar 

  50. Blagden SP, Rizzuto I, Suppiah P et al (2018) Anti-tumour activity of a first-in-class agent NUC-1031 in patients with advanced cancer: results of a phase I study. Br J Cancer 119:815–822. https://doi.org/10.1038/s41416-018-0244-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Asha A. Nair and Mrunal K. Dehankar (Department of Informatics, Mayo Clinic, Rochester, MN) for their contributions to the secondary analysis of RNA sequencing data.

Funding

This work was supported by Mayo Clinic institutional funding.

Author information

Authors and Affiliations

Authors

Contributions

MA performed experiments, analyzed data and wrote the manuscript. JMB analyzed data and wrote the manuscript. AA and JLL performed animal experiments and analyzed data. XC, JBE, AK, EL, SM, PLSUJ, BMN, YZ, MAS, and HEK analyzed data. EB performed the targeted sequencing experiments and analyzed data. MTB conceived and directed the aCGH studies and analyzed data. MJT and MJB conceived and directed the study. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Mitesh J. Borad.

Ethics declarations

Conflict of interest

JMB owns purchased stock of Clovis Oncology. MJB has received grant to institution from Senhwa Pharmaceuticals, Adaptimmune, Agios Pharmaceuticals, Halozyme Pharmaceuticals, Celgene Pharmaceuticals, EMD Merck Serono, Toray, Dicerna, Taiho Pharmaceuticals, Sun Biopharma, Isis Pharmaceuticals, Redhill Pharmaceuticals, Boston Biomed, Basilea, Incyte Pharmaceuticals, Mirna Pharmaceuticals, Medimmune, Bioline, Sillajen, ARIAD Pharmaceuticals, PUMA Pharmaceuticals, Novartis Pharmaceuticals, QED Pharmaceuticals, Pieris Pharmaceuticals, consultancy from ADC Therapeutics, Exelixis Pharmaceuticals, Inspyr Therapeutics, G1 Therapeutics, Immunovative Therapies, OncBioMune Pharmaceuticals, Western Oncolytics, Lynx Group, and travel support from Astra Zeneca. The remaining authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (XLSX 12 kb)

Supplementary file 2 (PPTX 1432 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, M., Bogenberger, J.M., Abdelrahman, A. et al. Evaluation of NUC-1031: a first-in-class ProTide in biliary tract cancer. Cancer Chemother Pharmacol 85, 1063–1078 (2020). https://doi.org/10.1007/s00280-020-04079-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-020-04079-z

Keywords

Navigation